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Abstract In order to deal with the rising complexity of safety-critical
systems, model-based systems engineering (MBSE) approaches are be-
coming popular due to their promise to improve consistency between
different views of the system model. Component Fault Trees (CFTs) are
one particular technique to integrate the well-known Fault Tree Analysis
(FTA) with a model of the system. CFTs decompose the specification
of fault propagation on component level, which results in smaller, easier
to manage models and leads to a safety analysis view that is consistent
with the system model. However, although CFTs gain more and more
popularity, their semantics is not well defined and the compositionality
of CFTs is not formally proven to the best of our knowledge.
In this paper, we provide a formal basis for CFTs, formalize semantics
of CFTs and formally prove compositionality of CFTs by mapping them
to information flow semantics, which is well-researched in the security
analysis domain. Our results allow insights in the compositionality of
CFTs, showing a high potential for validation techniques of CFTs and
discuss these consequences in detail. We claim that this proof is crucial
for the use of CFTs in assurance cases for safety-critical systems and one
fundamental approach to integrate safety and security engineering.

1 Introduction

With systems becoming increasingly complex, analyzing and assuring their de-
pendability becomes more and more challenging, e. g., in the domain of highly-
automated driving [2]. Since safety is a system property, component tests are not
sufficient. Hence, analysis has to be done on system level, requiring potentially
large safety artifacts to be reviewed. With growing complexity, the number of
test cases and size of analysis results to be reviewed grows exponentially.

The challenge of the growing size of a particular safety artifact, the fault tree,
led to the proposal of Component Fault Trees (CFT) by Kaiser et al. [17,18].
CFTs decompose the fault tree of a system and link its parts to system elements.
This allows specification and review of fault propagation on component level and
analysis on system level after automatically generating the system’s fault tree
based on the CFTs and the system architecture. This automation speeds up the
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impact analysis of a system’s safety properties after changes. However, to the
best of the authors’ knowledge, the composability property of CFTs has not been
formally proven so far.

We argue that a proof of the composability of CFTs is key to allow their usage
in assurance cases of safety-critical systems. This paper presents such a formal
proof, resulting in two main contributions: First, we provide formal semantics
for CFTs and a formal proof that the correctness of CFTs is compositional. This
is shown by mapping CFTs to the formalization of non-interference [8], a well-
known property from the security engineering domain. We discuss consequences
of our formalization and compositionality of CFTs for event types, component
reuse, and validation. Second, we show that this mapping is one fundamental
approach to integrate safety and security engineering.

2 Components and Component Fault Trees

CFTs are a compositional way to describe the propagation of faults through a
system in Model-based Systems Engineering (MBSE). Depending on the point
of view of the user of a CFT, it either represents the description of the actual
behavior of the component in case of a fault, or it represents the specification
of the fault behavior the component is supposed to implement. While both use
cases are valid, the intended meaning of when a component is consistent with a
CFT is the same. In the remainder, we consider CFTs to be the description of
the actual fault propagation of a component.

In this section, we formally define the semantics of CFTs. In Sect. 2.1 we
introduce the formal computational model of components. In Sect. 2.2 we for-
mally define CFTs and what it means for a CFT to correctly describe the fault
propagation of a component.

2.1 Components

In the remainder of this work we take the formalization of components from
Greiner and Grahl [8] and reuse their notation for better comparability of further
results in this paper.

A component has an internal state, input ports, and output ports. A com-
ponent can receive messages via input ports and send messages via its output
ports. Received messages can trigger the component to change its internal state.
Formally, we consider components as Input-Output Labeled Transition Systems
(see [26] for a formal definition of IOLTS). A port has a name and a signature,
i. e. names and types of variables that can be communicated via the port. For a
message m communicated via an input port with name p with value v, we write
m = p?v, for a message n communicated via an output port with name q with
value w, we write n = q!w. We refer to the set of all messages communicated
via an input port as inputs, and the set of all messages communicated via an
output port as outputs. If it does not matter whether a message is an input or
an output, we write m = p.v or n = q.w respectively. We write c

m−→ c′ for a
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component c communicating message m and transitioning to a component c′.
You can consider c′ to have a changed internal state. If c′ is irrelevant, we write
c

m−→, if there exists some c′ such that c m−→ c′.
The behavioral definition of a component limits the sequence of messages a

component can communicate. We refer to a sequence of messages as a trace. We
use a as the concatenation operator for traces and ∅ to refer to the empty trace.
The length of a trace is defined as the amount of messages in a trace. We write
c

t−→ c′ if a component c transitions to component c′ while communicating the
trace t. A component c can communicate a trace t a m while transitioning to
component c′, if there exists a component c′′ such that c t−→ c′′ and c′′

m−→ c′. We
again write c t−→, if there exists some c′ such that c t−→ c′. We refer to all possible
traces as T . Finally, we explicitly define environments in which components can
run. Environments model the entities providing inputs to a component after
observing the behavior of the component.

Definition 1 (Environment). An environment ω is a function T 7→ P(I),
where P(I) is the powerset of all inputs.

Environments limit the traces components can communicate while running in
environments to those traces, where the environment provides necessary inputs.

Definition 2 (Communication under Environment). A component c can
communicate a trace t under an environment ω, written ω |= c

t−→, iff c
t−→ and

for all t1, t2, p?v with t = t1 a p?v a t2, it holds that p?v ∈ ω(t1).

2.2 Component Fault Trees (CFTs)

Following the definition of Kaiser et al. [18,17], we consider a CFT as a visual
description for a given component that tells which output events are caused by
which combinations of input events and basic events.

An event, as used in a CFT, belongs to a port of a component, over which
a message is communicated in a erroneous way. The type of an event states in
which way the communicated message deviates from a correct one. We introduce
the examples ex and val as types of events later in this section.

Definition 3 (Event). An event E is a tuple (p, t), where p is port and t is a
type. If p is an input (output) port, E is an input (output) event.

Herein, we distinguish between input events (or input errors), output events
(or output errors), and basic events (or internal faults). Basic events are caused
by internals of the component, e. g., the breaking of hardware, glitches in a clock,
and similar. Hence, basic events are happening independent from the modeled
interfaces. For a concise presentation in this paper, we consider basic events in
a CFT to be communicated by the environment as a message via an implicit
special port into the component. In the remainder, we thus treat basic events
analogously to input events.

For each output event, the CFT describes the logical combination of input
events and basic events that lead to the output event by means of chained AND
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Figure 1. Two simple CFTs, where output events (black triangle) depend on input
events (yellow triangles).

and OR gates. Together, input events, basic events, AND gates, and OR gates
describe a formula in propositional logic where the events are the literals which
only appear non-negated in the formula.

Please note that general fault tree standards such as the IEC 61025 [14] de-
fine more complex gates such as a voter gate. We neglect these in this work since
they can be transformed into combinations of AND and OR gates. Additionally,
the IEC 61025 [14] defines a NOT gate (and a derived XOR gate) together with
the hint that it “is advised that this gate be used carefully by an experienced an-
alyst to avoid unwanted results”. This hint and the lack of use cases might be the
reason why we are unaware of industrial fault trees that use NOT gates, except
for mimicking behavior that is inherent to CFTs, namely exchanging subtrees
depending on variants used. For this reason, we neglect NOT gates and derived
gates as well, assuming literals to occur non-negated in the resulting proposi-
tional formula. We can thus formally define a CFT as a tuple of a propositional
formula of input (and basic) events and an output event.

Definition 4 (CFT). A CFT is a tuple (P,E), where P is a propositional
logic formula, where each literal in P is an input event, and each input event
only appears non-negated in P . E is an output event.

A CFT describes which combinations of input and basic events lead to which
output events. Figure 1 (right) shows the exemplary component C1 with input
ports pa, pb, pc, and pd, and the output ports pe and pf . The CFT shows the
events A, B, and C on the respective ports and the output event E on port pe.

Example 1. The CFT (P,E) shown in Figure 1 (right) defines P = (AuB)tC.
The semantics of the specification given by the CFT is that E may happen, if
either an event A and an event B happen or the event C happens. In other
words, the CFT states: if E happened, then previously either the events A and
B happened, or the event C happened (or both). In our example, the complete
propositional logic formula of the CFT is E ⇒ P , i. e. E ⇒ ((A uB) t C).

Please note that a CFT does not state that event E has to happen (equiva-
lence instead of implication), if the other events happen, i. e. a CFT describes a
worst-case fault propagation.

We consider two types of events:
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1. A timing event (p, ex ) describes for a correct message communicated over
the port p that in the erroneous case, this message is not communicated (i. e.,
commission error); or in the correct case a message is not communicated over
p, while it is communicated in the erroneous case (omission error).

2. A value event (p, val) describes that in the correct case a message is com-
municated over p with value v, while in the erroneous case a message on the
port is communicated with a value v′, different from v.

Example 2. Reconsidering our example in Figure 1, we assume the events (in
the sense of Def. 3 describing a deviation from correct behaviour) to be defined
as A = (pa, ex ), B = (pb, val), C = (pc, val), and E = (pe, val). Assume the
component for which the CFT provides a specification can communicate the
following traces:

tc = pa?1, pb?2, pc?3, pd?4, pe!5
t1 = pb?2, pc?3, pd?4, pe!5

t2 = pb?2, pc?3, pd?4, pe!6
t3 = pb?3, pc?3, pd?4, pe!6

Let tc above be a correct execution without any input events occurring. For t1,
the CFT correctly describes the behavior of the component: Here, only a timing
event happens on port pa, i. e. the message is not received. The CFT states that
the component still sends the correct output message (E = (pe, val)), since no
value event occurred at port b (pb, val) and P = (A uB) t C.

However, the behavior in t2 is a counterexample for the correctness of the
CFT w.r.t. the component’s behavior, because the timing event A happened in
the form of not communicating pa?1, while the value event B does not happen.
Yet E occurred and the component sends the wrong output value.

The component’s behavior in trace t3 would again be correctly described by
the CFT, since additionally to A the value event B happened, and thus the value
event E happens.

We will see in the following that it is easier to provide a formal definition of the
semantics of a CFT in terms of when an event must not happen. So, instead
of expressing when a output event may happen, we rephrase the semantics of
a CFT such that it describes when an output event must not happen. For a
CFT describing E ⇒ P , we consider the contrapositive of the formula and gain
P ⇒ E. The resulting formula states that if P is not satisfied, i.e., if a respective
combination of input events does not happen, then the event E must not happen.

Example 3. For our example, the reformulation is as follows:

((A uB) t C)⇒ E ≡ ((A tB) u C)⇒ E ≡ ((A u C) t (B u C))⇒ E

In other words: If neither event A nor event C happens, then event E must not
happen. Also, if neither event B nor C happens, then event E must not happen.

For every propositional formula P , with literals only appearing non-negated,
the formula P is a propositional formula with literals only appearing negated.
For P we can find a disjunctive normal form with clauses P1, ...Pn, such that
P = P1 t ...tPn. P ⇒ E then holds, iff for all clauses P i it holds that P i ⇒ E.
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Definition 5 (Clause). A clause Pi is a propositional formula, where each
literal only appears negated and u is the only logical operator in the formula.

A clause P i only considers events on particular ports. Let for a given CFT:
P i = A1 u . . . uAn and F be the negated output event, where Ai = (qi, ti) and
F = (qf , tf ). So in Example 3, A u C and B u C are two separate clauses.

For this specification, messages on ports other than qi and qf are irrelevant
to the specification. We can now define when messages at most differ from each
other according to an event or a clause.

Definition 6 (Message Event-Equivalence). A message m = q.v is irrele-
vant w.r.t. an event Ai = (qi, ti), if q 6= qi. For a message m that is irrelevant,
we write m ≈Ai

�.
Two messages m1 = q1.v1 and m2 = q2.v2 are event-equivalent w.r.t. an

event Ai = (qi, ti), written m1 ≈Ai
m2, if

m1 ≈Ai
� and m2 ≈Ai

� or

qi = q1 = q2 and ti = ex or
qi = q1 = q2 and ti = val and v1 = v2

Two messages m1 = q1.v1 and m2 = q2.v2 are event-equivalent w.r.t. a clause
Pi = A1 u . . . uAn, written m1 ≈Pi

m2, if m1 ≈Ai
m2 for all 0 < i ≤ n

Two messages m1 = q1.v1 and m2 = q2.v2 are event-equivalent w.r.t. a clause
Pi and an event E, written m1 ≈Pi,E

m2, if m1 ≈Pi
m2 and m1 ≈E m2

Example 4. Revisiting Example 2, ≈A is defined as

q1.v1 ≈A � if q1 6= qa and
q1.v1 ≈A q2.v2 if q1 = q2 = qa or q1.v1 ≈A � and q2.v2 ≈A �

Analogously ≈C is definied as

q1.v1 ≈C � if q1 6= qc and
q1.v1 ≈C q2.v2 if q1 = q2 = qc and v1 = v2 or q1.v1 ≈C � and q2.v2 ≈C �

Given event equivalence of messages, we can canonically define equivalence
of traces. Two traces are equivalent w.r.t. an event, if both traces at most differ
on irrelevant messages and other messages in the traces are equivalent.

Definition 7 (Trace Event-Equivalence). Two traces t1, t2 are event-equivalent
w.r.t. an event Ai, written t1 ≈Ai

t2, iff

t1 = ∅ and t2 = ∅ or
t1 = m1 a t′1 and m1 ≈Ai

� and t′1 ≈Ai
t2 or

t2 = m2 a t′2 and m2 ≈Ai
� and t1 ≈Ai

t′2 or

t1 = m1 a t′1 and t2 = m2 a t′2 and m1 ≈Ai
m2 and t′1 ≈Ai

t′2

Event-equivalence of traces w.r.t. a clause is defined analogously.
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Example 5. For the clause B u C the trace tc from Example 2 is equivalent to
traces t1 and t2. However, tc is not equivalent to t3, since pb?2 ≈BuC pb?3 does
not hold. For the clause AuC, tc is not equivalent to any of the traces t1, t2, t3,
since pa?1 ≈A � does not hold, but no message on pa is communicated in one
of the traces t1, t2, or t3.

To provide formal semantics of the specification of a CFT for a component,
we compare correct runs of the component with runs where erroneous inputs
are provided to the component. Given an environment ω, we define erroneous
environments ωf w.r.t. a clause Pi and an output event E such that ωf can
provide input messages that deviate from correct messages according to Pi. ωf ,
however, may provide arbitrary input messages after observing an output from
the component, which is not specified by E. In that case, the CFT is not correct
w.r.t. the component.

Definition 8 (Erroneous Environment). ωf is an erroneous environment
for ω w.r.t. a clause Pi and an output event E, written ωf ≈Pi,E

ω, iff for all
t1 ≈Pi,E

t2 it holds that

∀p?v ∈ ω(t1) • (p?v ≈Pi,E
� or ∃q?u ∈ ωf (t2) • p?v ≈Pi

q?u) and (1)

∀q?u ∈ ωf (t2) • (q?u ≈Pi,E
� or ∃p?v ∈ ω(t1) • p?v ≈Pi

q?u) (2)

Definition 8 limits how the inputs provided by a correct and an erroneous
environment may differ, after observing behaviors of the component which differ
in the correct and the erroneous run at most according to the specification
provided by Pi and E. Line 1 defines that the erroneous environment must not
omit a message, which is provided by the correct environment, unless the correct
message is irrelevant. However, the messages may differ according to the clause
Pi and the output event E. Line 2, states that the erroneous environment must
not provide messages, which are not provided by the correct environment, except
irrelevant messages. Again, the messages may, however, differ according to the
fault specification.

Erroneous environments describe all possible environments, which a com-
ponent can run in, such that at most input events according to a clause are
provided. Therefore, an environment should be an erroneous environment to it-
self (i.e. no input events happen at all). We extend the definition of environments
from above.

Definition 9 (Environment (extd.)). A function ω is an environment w.r.t.
a clause Pi and an event E, iff it is an environment according to Definition
1, and ω is an erroneous environment to itself according to Definition 8 (i. e.,
ω ≈Pi,E

ω).

We can now define correctness of a CFT w.r.t. a component. A clause P
and an output event E are correct w.r.t. a component, if for every execution in
an erroneous environment, there is also an execution in the respective correct
environment, such that the correct and the erroneous execution at most differ
on input messages allowed by P and output messages allowed by E.
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Definition 10 (Clause correctness w.r.t. a component). Given the rela-
tion ≈P,E for the clause P and the output event E. P and E are correct w.r.t.
a component c, if

∀ωf , ωc∀tf • ωf ≈P,E ωc ∧ ωf |= c
tf−→ =⇒ ∃tc • ωc |= c

tc−→ ∧ tf ≈P,E tc

Finally, we can define for the complete CFT when it is correct w.r.t. a com-
ponent c, if all clauses defined by the CFT are correct w.r.t c.

Definition 11 (CFT correctness w.r.t. a component). Given a component
c, a CFT (P,E) with P = P1 t ... t Pn. (P,E) is correct w.r.t. c, iff Pi and E
are correct w.r.t. c for all 0 < i ≤ n.

In this section we have formalized CFTs and CFT correctness w.r.t. a com-
ponent. In the following section we formally discuss CFT composition and show
that CFT correctness is compositional.

3 Compositionality of Component Fault Tree Correctness

The core idea of components is to compose them to larger, typically more com-
plex systems. When composing components, we also have to compose their CFTs
to a CFT for the composition. In this section, we formally prove that the cor-
rectness of CFTs is compositional. The formalization of the semantics of CFTs
in Sect. 2 is equal to the formalization of non-interference, a well-known se-
curity property that describes information flow through a system. For details
on non-interference, we refer to Sect. 5. For proving compositionality of CFT
correctness, we re-use results compositionality of non-interference from [8].

In Sect. 3.1 we formally define CFT composition and discuss in Sect. 3.2
compositionality of correctness of composed CFTs w.r.t. composed components.
In Sect. 3.3 we show that some restrictions we made in this paper for presentation
purposes can be relaxed without violating the core of our results.

3.1 CFT composition

The composition of components in a model is defined by connectors between one
output port of one component and an input port of the other component, see
Figure 1. These connectors are implicitly directed, with the direction from an
output port to an input port. We assume that the composition of components
is acyclic. This means that we assume that if an output port of component a is
connected to an input port of component b, then there is no output port of com-
ponent b, which is connected to an input port of component a (and analogously
for compositions). For sake of simplicity of the presentation in this paper, we
assume that connectors only connect ports with the same name. For two compo-
nents c and d each providing the ports pa, we write c.pa and d.pa to distinguish
them. Also, for simplicity of the presentation, we assume that an output event
is at most connected to one input port.
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For the CFTs of composed components, we assume, for a simpler presenta-
tion, that two ports connected by a connector define the same events, i.e. if a
connector connects c.pa and d.pa, and for c.pa an event (pa, t) is defined, then
an event (pa, t) is also defined for d.pa and vice versa.

Two CFTs can be composed, if the output event of one CFT is the same as
an input event of the other CFT. If (Pc, E) is a CFT of component c and (Pd, A)
is a CFT of component d, and c and d are composed via a connector on the port
which has defined event A, then we can also compose the CFTs. The CFT of the
composition comp is (P ′

c, E), where P ′
c is the formula Pc where each occurrence

of A is replaced by the formula Pd.

Definition 12 (CFT composition). Let c and d be components, p1 . . . pn
ports, which are input ports of c and outputs ports of d, A1

1 . . . A
1
m1

, . . . An
1 . . . A

n
mn

events with Ai
j being an event on port pi, i.e. an input event of c and an output

event of d. Let further be (Pc, E) be a CFT of c and (P i
j , A

i
j) the CFTs of d for

the output events Ai
j.

We define the CFT of the composition of c and d for output event E as
(Pc,d, E), where Pc,d is formula Pc with each occurrence of Ai

j is replaced by P i
j .

Note that by assumption, compositions of components are acyclic. Therefore
for all compositions of c and d it is clear in which direction messages are passed.
The composition of two CFTs thus itself is a CFT according to Definition 4. As
such, we can discuss the correctness of a composed CFT w.r.t. a component.

3.2 Compositionality of CFT correctness

If two CFTs (Pc, E) and (Pd, A) are correct w.r.t. the components c and d re-
spectively, it is not obvious that their composition (Pc,d, E) is correct w.r.t. the
composition of c and d. We consider here the composition of two components as
the interleaving composition of their LTS.

For the following proofs, we assume components to 1) accept inputs only
depending on the port, not the communicated value (no discrimination on inputs
over the same port), 2) not to produce indeterministic output and 3) not to have
indeterministic internal behavior.

Definition 13 (Deterministic components). A component c is determinis-
tic, if

c
p?v−−→ =⇒ c

p?v′

−−−→ for all v and v′ and

c
m1−−→ and c

m2−−→ and m1 6= m2 =⇒ m1 and m2 are inputs, and

c
m−→ c1 and c

m−→ c2 =⇒ c1 = c2

In the remainder, we assume all components to be deterministic.
We can now show that the composed CFT is also correct w.r.t. the compo-

sition of the components.
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Theorem 1 (Composed CFT correctness w.r.t. composition). Given
components c and d, CFT (Pc, E) of c and (P i

j , A
i
j) of d as in Definition 12,

such that the CFTs are correct w.r.t. the respective components. Then the com-
posed CFT (Pc,d, E) is correct w.r.t. the composition of c and d.

Proof. The full formal proof for this theorem can be found in an accompanying
technical report1.

3.3 Discussion of restrictions

In the previous sections we made several restrictions on components, their ports,
allowed event types and others. Several of these restrictions were made in order
to allow a compact description of our results in this paper. In the following, we
lift several of these restrictions without invalidating our core compositionality
result. Please note that all proofs were made such that they also hold in the less
restricted case without changes.

In Sect. 3.1 we assume that connectors only connect ports with the same
name. This assumption is typically not satisfied in a real model, however, it can
easily be achieved with a simple renaming of ports.

We further assume that an output port is at most connected to one input
port. Practically, an output port is often connected to several input ports, mod-
eling the property that a message sent via this port is read by several other
components. Again, a 1:1 relation between ports can be achieved by duplicating
the output port, renaming it, and connecting one input port to one of the dupli-
cated output ports. Similarly, multiple events on a single port are not restricted.

Concerning event types, we only considered timing and value events in Sect.
2.2. Our results hold for more complex type systems, as long as the type system
defines an equivalence relation ≈ over messages, such that m1 ≈ m2 implies that
either m1 and m2 are irrelevant, or m1 and m2 are messages over the same port.
For detailed examples, see [8].

For example we allow event types which state that messages may differ on
the last bit, or that messages may differ on the last bit, if the first bit of the
value is 1 (e. g., encoding a break signal), or even that a message is irrelevant iff
the first bit of the value is 0 (e. g., encoding a log message).

Also in Sect. 3.1 we assume that if two ports are connected, the event types
defined on the ports are equal. This assumption is made for presentational pur-
poses. We do require that the event types defined on the ports satisfy a subtype
relation. A similar, but informal, subtype definition for CFTs is provided by
[21]. If pi is the input port, and po is the output port with events Ai and Ao

respectively, it has to be satisfied that for all messages m1 and m2 it holds
that m1 ≈Ai

m2 implies m1 ≈Ao
m2. For a detailed discussion of this subtype

property, the interested reader is referred to [10] and [9, Sect. 7.3].

1 Greiner, S., Munk, P., and Nordmann, A.: Compositionality of Component Fault
Trees - Definitions and Proofs. (2019). http://arxiv.org/pdf/1907.09920
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4 Consequences

Apart from the central result of this paper, the compositionality of correctness
of CFTs, our work has some fundamental consequences for safety engineering
concerning fault propagation as well as security engineering. For one, composi-
tionality allows easier re-using of components and their CFTs in different con-
texts since analysis results can be re-used and only have to be acquired once.
Additionally, our formalization of CFTs connects the well-known security prop-
erty non-interference with the safety method concerning CFTs. Thus the results
in the respective domains can be re-used to a certain extent in the other domain.

4.1 Consequences for Safety Engineering

Limits of Compositionality. In this paper, we use equivalence relations over
messages as a basis for event specifications. The main reason is that equiv-
alence relations allow for a general and rather simple-to-use compositionality
result. Other approaches from non-interference research are not that strict on
the specification. In particular [4,7] discuss specifications, where the secrecy (or
criticality in our case) of some output information depends on previously com-
municated inputs, e. g., some information is secret if the user did not previously
log in with a password. They show that in general these specifications can also
be compositional. However, this result is not general, but heavily depending on
internal properties of the program, in particular invariants of the program state
and properties connecting those invariants to the external communication his-
tory. The proofs of these properties are specific to a concrete specification and
the system, complicated, complex, time-consuming, and hence not practicable
for real-world programs.

Event Types. Different work on CFTs is concerned with type systems and hierar-
chies for event types. Typically, this work also provides sub-type relations, often
w.r.t. semantic sub types, i.e., a type is a subtype of another, if from common
understanding of the expressed fault, it is more specific. Our equivalence rela-
tions in combination with their effect on compositionality (see Sect. 3.3) provide
a formal condition for subtypes relations.

CFT validation. Fault propagation descriptions are typically validated against
the implementation of the system using time-consuming and inherently incom-
plete fault injection tests. Our formalization shows that CFTs in essence describe
an information flow property, thus we can re-use validation methods originally
designed for information flow analysis. Most of these methods are focused on
software components.

For example, a very common method for analyzing information flow are type
systems. See [12] for an overview. Here inputs and outputs of a software compo-
nent are typed with security types (similar to our event types) and by automat-
ically inferring types of statements and local variables, it can be shown that the
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information flow of an implementation is consistent with the specification, i.e.,
the CFT in our case.

Another technique is taint analysis, e. g., [3], where inputs are tainted to be
secret (faulty in our case), and taints are propagated through the program. It
can now be checked that public outputs (in our case outputs over critical ports)
are not tainted. Taint analysis can be performed statically and dynamically.

Other techniques build on program dependency graphs (e. g., [11]), where
through program slicing the flow of information (propagation of faults in our
case) is analyzed. Dependency graph based analysis are in particular interesting
in terms of scalability. These techniques can be useful for automatically gener-
ating information flow specifications (CFTs) from a given program.

Finally, non-interference is a well-defined property, which allows for theorem
proving approaches for the verification of information flow (fault propagation).
Different approaches have been developed building on different theoretical back-
grounds, e. g., [27]. Since non-interference (CFT correctness) is compositional, a
combination of different analyses can be relatively easily achieved by using differ-
ent analyses either for different component or even different partial specifications
(Clauses in our case).

4.2 Consequences for Security Analysis

While methods for the analysis of information flow properties is well-researched,
it is an open problem how to gain the necessary specifications. For a non-
interference specification for security-critical programs, inputs and outputs have
to be marked as secret or public. Practically, those specifications do not exist
for real-world programs.

Non-interference is often used for modeling confidentiality properties, i.e.,
properties stating that some secret information must not leak to publicly avail-
able outputs. In particular in safety-relevant systems, e. g., automotive systems,
a more interesting security property is integrity, i. e. the property that an at-
tacker is not able to influence safety-relevant outputs. Safety norms, e. g., ISO
26262 [15], recommend fault propagation analysis for those outputs in form of
FTA and FMEA anyway. Thus, a CFT in essence defines an integrity specifica-
tion for safety-critical outputs. This specification could generally be re-used in a
threat and risk analysis in security engineering, e. g., SAE J3061 [16], to decide
whether an attacker can indirectly influence a particular safety-relevant output.

5 Related Work

Extensive overviews of MBSA methods, including CFTs, are given by Aizpurua
and Muxika [1], Sharvia et al. [28], and Lisagor et al. [19]. CFTs have been
used in different industrial domains, such as railway [13] and automotive [22,24].
The underlying principle of all CFT approaches and implementation is to stitch
together the fault tree for a given top event based on the individual CFTs and
the components of the system model [17,18].
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Thums and Schellhorn [31] present an FTA semantics in Computational Tree
Logic (CTL). Later, Thums [30] also introduces an FTA semantics in Interval
Temporal Logic (ITL) and compares it with previous formalization, e. g., in
Duration Calculus (DC). However, Thums did not consider CFTs.

Bozzano et al. [5] present a trace-based formalization of hierarchical com-
ponents and their contracts. Extending this formalization with contract-based
fault injection, they show how fault trees can automatically be generated. While
this is a very powerful approach, it requires components, their contracts, and
the refinement of these contracts to be specified. As opposed to this work, we
directly prove the composability of CFTs.

Mahmud et al. [20] generate Pandora temporal fault trees (TFT) based on the
behavior of components defined by state machines. The approach is to generate a
TFT from each state machine and combine these to a TFT of the entire system.
However, the authors do not formally prove the compositionality property. To
the best of our knowledge, the correctness of this composability has not been
formally proven so far. Our formalization of components as Labeled Transition
Systems, and formalizing the semantics of CFTs using equivalence relations is
an extension of previous work in [8].

Formalizing information-flow properties with an explicit environment was
pioneered by Wittbold and Jonson[32], and Rafnsson et al. [26] show that non-
interference is also compositional when the presence of messages is secret.

In [8], compositionality is shown for specifications using the more general
notion of equivalence relations, and the theory is extended to components which
offer their functionality in the form of services. In [10], the authors show that
non-interference for service components directly follows from non-interference of
services, which allows a combination of analysis methods on a more fine-grained
level, hence with increased precision. Bauereis et al. [4] show that compositional-
ity of non-interference for specifications with a dependency on the history, e. g.,
access to information after logging in, is possible, however complicated and not
generalizable.

As mentioned in Sect. 4, the analysis of information flow properties is well-
known in the security domain. Several analysis methods from the security do-
main or the safety domain have been adopted and applied in the respective other
domain [25]. One prominent example is the attack tree analysis that is conceptu-
ally based on the fault tree analysis [25]. A survey of both techniques is given by
Nagaraju [23]. Fovino et al. [6] integrate attack trees and fault trees. While the
authors propose a sound mathematical basis for the quantitative security risk
assessment, they do not base their analysis on the system model. Steiner and
Liggesmeyer [29] propose to extend CFTs with attack trees. The authors propose
to leverage the data flow in the system to create new security events besides the
safety events in CFTs. For cut sets that contain both, security and safety events,
the rating of combined security events and the probability of combined safety
events are calculated separately. Steiner and Liggesmeyer do not leverage the
information flow that is already modeled in the system model and do not prove
the composability of their approach.
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6 Conclusion and Future Work

In this paper, we present a formalization of Component Fault Trees (CFTs)
by mapping their semantics to the information-flow property non-interference
for Input-Output Labeled Transition Systems. We re-use results from security
research to formally prove that the correctness of CFTs for components is compo-
sitional. By bringing together a well-known safety engineering approach (CFTs)
and a well-known security property (non-interference), we enable to check the
validity of CFTs against their implementation, leveraging existing validation
methods from security engineering such as information flow analysis using type
systems, taint analysis, or program dependency graphs and program slicing.
Hence, we argue that CFTs provide the integrity specification of safety-critical
outputs that is required by threat and risk analysis in security engineering.

As future work, we plan to explore the mutual benefits of other combinations
of safety and security engineering methods and processes.
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