Using Language Workbenches and Domain-Specific Languages
for Safety-Critical Software Development

Markus Voelter

independent / itemis AG
voelter@acm.org

Patrick Alff, Laurent Wiart

Voluntis
{Patrick.Alff|Laurent.Wiart}@voluntis.com

Abstract

Language workbenches support the efficient creation, in-
tegration and use of domain-specific languages. Typically,
they execute models by code generation to programming
language code. This can lead to increased productivity and
higher quality. However, in safety-/mission-critical environ-
ments, generated code may not be considered trustworthy,
because of the lack of trust in the generation mechanisms.
This makes it harder to justify the use of language work-
benches in such an environment. In this paper we demon-
strate an approach to use such tools in critical environments.
We argue that models created with domain-specific lan-
guages are easier to validate, and that the additional risk re-
sulting from the transformation to code can be mitigated by
a suitably designed transformation and verification architec-
ture. We validate the approach with an industrial case study
from the healthcare domain. We also discuss the degree to
which the approach is appropriate for critical software in
space, automotive and robotics systems.

1. Introduction

In safety-critical systems, hardware and software compo-
nents require a higher level of trust compared to non-critical
contexts because system failures may lead to financial loss
(finance), loss of non-replaceable systems (space), environ-
mental damage (power plants) or user harm or death (health-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

Copyright © ACM [to be supplied]. .. $15.00.
http://dx.doi.org/10.1145/

Bernd Kolb, Klaus Birken

itemis AG
{kolb|birken}@itemis.de

Andreas Wortmann

OHB System AG
andreas.wortmann@ohb.de

Federico Tomassetti

independent
federico@tomassetti.me

Arne Nordmann

Bosch Corporate Research
arne.nordmann@de.bosch.com

care). The higher a system’s criticality, the more confidence
must be provided regarding its proper functioning. Confi-
dence can be built by architectural means in the system it-
self (such as redundancies) and by following particular well-
defined development processes. The latter includes tools,
programs used for constructing the system. It has to be en-
sured and documented that the use of those tools does not in-
cur additional errors in a critical software component (CSC).
Development of critical systems is governed by stan-
dards, specific to the particular domain; all of them are un-
derstandably conservative. For example, they require the
use of well defined, unambiguous language subsets of C or
Ada or proven model-driven development tools like Mat-
lab Simulink. Defining custom domain-specific languages
(DSLs) with specific code generators or interpreters is,
at first glance, at odds with this conservative perspective.
However, there are also benefits, in particular for valida-
tion, which is why it is desirable to use those tools in
safety-critical contexts. This paper explains this conflict and
demonstrates a practically proven way to overcome it.

Contributions This paper makes four contributions: (1) an
analysis of the risks involved in using DSLs and language
workbenches (LWBs) regarding the introduction of faults
into a CSC, (2) an architecture for mitigating these risks, (3)
a case study from the healthcare domain that validates the
architecture, and (4) brief discussions of the applicability of
the approach to three other safety-critical domains.

Structure We provide some background to our approach
and define important terms in Section 2. The advantages of
using LWBs and DSLs are recapped in Section 3; this serves
as the motivation of why one would want to use DSLs in
the first place. We then define the problem associated with
the lack of trust in DSLs and generators in Section 4. Our
first two contributions, the risk analysis, as well as the mit-
igations we propose, follows in Section 5. The validation

through the detailed case study with Voluntis” medical com-
panion apps is covered in Section 6, the applicability to other
domains is briefly discussed in Section 7. We conclude the
paper with related work, a discussion and conclusions plus
future work in Sections 8 through 10.

2. Background
2.1 Safety, Standards and Tools

Domains and Standards Critical systems are found in
domains such as railway, healthcare and medicine, robotics,
aerospace or automotive. Each domain has different regu-
latory bodies, different organizational and cost structures
and different development philosophies; for example, cars
are developed differently from airplanes because of the
paramount importance of unit cost in the automotive indus-
try. These differences are captured in each domain’s safety
standards such as DO-178C for aviation, EN50129 for rail,
IEC62304 for medical device software or ISO26262 for au-
tomotive systems. These standards all reflect the philoso-
phies expressed in the generic safety standard IEC61508.

Tools The standards describe requirements for tools used in
the development of critical systems. For the development of
critical software (as opposed to systems), three categories of
tools are relevant: development tools create artifacts that ex-
ecute as part of a CSC (for example, compilers, code genera-
tors); analysis tools ensure some aspect of correctness of the
CSC (for example, code style checkers, data flow analyzers);
and management tools support the development process (for
example, managing requirements or test results). Develop-
ment tools, of which LWBs and DSLs are examples, imply
the biggest risk, because they may introduce additional sys-
tematic errors into the CSC if they are faulty. The standards
in all domains require the reliable mitigation of such errors
by limiting the permitted tools, introducing redundancy in
the CSC, as well as requiring adherence to specific develop-
ment processes as well as extensive documentation.

Tool Reliability and Mitigation Strategies Some develop-
ment tools, such as Scade,! can be assumed to work correctly
and to not introduce errors into a CSC; no project-specific
mitigations must be put in place. Such tools are called qual-
ified tools. Each domain standard has specific ways of qual-
ifying a tool, but three general approaches exist: (1) Provide
proof and/or extensive validation that the tool is correct. (2)
The tool itself has been developed with a process that follows
a safety standard. (3) A specific version of a tool has been
“proven in use”, which means that it has been used success-
fully in many similar projects, reports about malfunctioning
of the tool have been collected and process-based mitiga-
tions (for example, though additional testing) are defined;
projects that use a tool from this category must then docu-
ment that they use the mitigations.

"http://www.esterel-technologies.com/products/scade-suite/

2.2 DSLs and Language Workbenches

Domain-Specific Languages DSLs are computer lan-
guages optimized for expressing programs in a particular
domain [62]. They may have different degrees of expressiv-
ity — from simple structure languages to Turing complete
languages — and use a wide variety of notations such as text,
tables, symbols, math, diagrams [67]. Importantly, the ab-
stractions and notations used in the DSL are aligned with the
particular domain at which the DSL is targeted; this is the
core difference to general-purpose programming languages,
whose abstractions are generic. Many DSLs are used by peo-
ple who are competent in the domain, but who are not nec-
essarily developers. For those DSLs, notations that reflect
the domain are especially important, even if those might not
resemble popular syntax from general purpose languages.

Language Workbenches A language workbench is a tool
that efficiently supports the development of languages, of-
ten, but not necessarily, DSLs; the report from the language
workbench challenge [17] provides a good overview. They
typically provide a set of DSLs to define various aspects
of languages, such as structure, syntax, static semantics, dy-
namic semantics (usually through interpreters or generators)
as well as various aspects relating to IDEs (code completion,
syntax coloring, goto definition, find usages, refactorings).

Jetbrains MPS MPS? is an open source language work-
bench developed by Jetbrains over the last 15 years. While
not used as widely as some other language workbenches,
it is used to implement interesting languages for real-world
use. Its distinguishing feature is its projectional editor, which
supports practically unlimited language extension and com-
position [65] as well as a flexible mix of a wide range of tex-
tual, tabular, mathematical and graphical notations [67]. The
experience of using MPS for implementing a large set of C
extensions in the context of mbeddr [71] is discussed in [73];
the paper provides a detailed assessment of the strengths and
limitations of MPS for large-scale language development.

Model vs. Program The two terms are used differently in
programming language and modeling communities. In par-
ticular, there is sometimes a distinction between the general
notion of a model and an executable model. A program can
then be seen as an executable model. Models can also be re-
garded as a system’s description that is more abstract (i.e.,
contains fewer details) than a program; a program “imple-
ments” the model. In this paper, we avoid the philosophical
differences and instead use the following pragmatic defini-
tions: every artifact that is expressed with a language de-
fined in a language workbench is called a model. Artifacts
expressed outside the LWB, i.e., typically some generated or
manually written code expressed in a general-purpose lan-
guage, we call a program.

Execution Engine The models created with a DSL can be
executed either by code generation to a lower level program-

2http://jetbrains.com/mps

ming language (which is then in turn compiled) or through
interpretation where the program is traversed and the seman-
tics of each syntax element is applied (this may happen ei-
ther directly on the program syntax tree or on an interme-
diate represenation that is derived from the program). Both
approaches have their own benefits and drawbacks, mostly
regarding performance and deployment effort; however, in
many context the two are interchangeable. We use the term
execution engine to refer to both generation/compilation/ex-
ecution and interpretation with potential generation of an in-
termediate representation.

2.3 Verification and Validation

Verification vs. Validation Verification ensures that the
software works without intrinsic faults. The to-be-verified
properties are either implied by the programming or model-
ing formalism (such as uninitialized reads, invalid derefer-
encing of pointers or unreachable states) or explicitly speci-
fied through test cases or property specifications (postcondi-
tions for functions or specific temporal logic properties for
state machines). Verification is performed by software de-
velopers. Validation ensures that the software does what the
requirements specify. Example validation activities include
requirements review, simulation, acceptance tests or tracing
of implementation artifacts to requirements. Not all of these
can be automated and some of them are performed by stake-
holders other than developers. There is consideral variability
in how these terms are defined in various domains (for ex-
ample, the FDA has a definition for medical devices®), but
they all fit roughly with the distinction defined here.

Verification through Testing or Analysis A fest case runs
the CSC through its (possibly test-specific) APIs, asserting
that it reacts correctly to specific stimuli. Static analysis does
not run the program, instead it analyzes program code for a
class of faults, possibly relative to previously user-specified
verification properties. Examples include checking the sat-
isfiability of sets of Boolean conditions, checking temporal
properties on state machines or using abstract interpretation
for ruling out runtime errors such as division by zero.

Coverage Both testing and static analysis suffer from the
coverage problem: a fault is only detected if the engineer
writes a test case or specifies a verification property that is
able to detect that fault. As a remedy, code reviews may find
that some tests/properties are missing, various kinds of cov-
erage [77] may be measured by tools, or test generation [10]
may automatically raise coverage to a required level.

3. The Benefits of DSLs and LWBs

Our argument relies on the claim that it is desirable to per-
form as many development activities as possible on a suit-
ably abstract model. While we provide some backing in this
section, we assume that the reader accepts this claim, based

3https://www.fda.gov/MedicalDevices/
ucm085281.htm#_Toc517237938

on their own experience and the extensively documented
productivity benefits of modeling, DSLs, code generation
and tools [6, 7, 25, 29, 30, 32, 43, 44, 72]. We include this
chapter in this paper even though it is not a contribution,
because we refer to the benefits from the case study in Sec-
tion 6, which also confirms many of these benefits.

Implementation Effort A DSL can reduce the imple-
menation effort as a consequence of its more appropriate,
higher level abstractions. DSL code is typically more con-
cise and requires less boiler-plate than functionally equiv-
alent programming language code [72]. Targeting multiple
platforms amplifies this benefit. Low-level mistakes (for ex-
ample, faulty pointer arithmetics in C) are prevented. IDE
support can also be better because the domain-related se-
mantics of the DSL can be known by the IDE.

Note that in critical software, the implementation is not
where most of the effort is spent; instead, it is spent in
validation and verification (for example, Voluntis calculates
three times more effort for validation and verification than
for implementation). However, taken together with the val-
idation and verification advantages outlined below, a more
efficient implementation allows faster iterations, thus signif-
icantly contributing to overall efficiency.

Verification and Test Models expressed with a suitable
DSL avoid the need to “reverse-engineer” domain semantics
from low-level implementation code, simplifying verifica-
tion and test. For example, if state machines are represented
first-class as opposed to, for example, switch-statements in
C, an automated analysis to detect dead or unreachable states
is much simpler to perform and hence, to implement [74].
Another example is the use of decision tables instead of
nested if statements. The semantics of the decision table
imply that it has to be complete (all combinations of inputs
must be covered) and overlap-free (for every input, only one
branch is valid). A solver can be used to check for these
properties [56, 74]. A structure composed from if state-
ments cannot be assumed to imply these semantics.
Verification properties or test cases can also be expressed
at the higher level of abstraction, thus making verification
more efficient. For example, properties about the state ma-
chine can directly refer to states and events, and test cases
can explicitly trigger events and assert states. Verification
results can be reported at the level of the domain abstrac-
tions [49], even though the lifting of low-level verification
results back to the domain level can be non-trivial (there is
a whole section (4.1) on testing lifting algorithms in [55]).
Clearer semantics are also useful for test case generation.
For example, variables can be annotated with ranges or other
constraints; the test case generator can use those as the
boundaries for the tests (instead of the system-specific, and
domain-irrelevant, MAX_INT and MIN_INT boundaries).

Validation Models can be used to front load [47] valida-
tion, reducing the cost of errors [5]. Models can be simulated
and tested to ensure that they behave correctly; this approach

is called model-in-the-loop testing (in systems engineering)
or quality-by-design (in the pharmaceutical industry). Val-
idation also involves reviews by other developers or by a
separate QA team. Models that use appropriate abstractions
and notations make reviews more efficient because they are
easier to comprehend and easier to relate to requirements
because the semantic gap is narrower; Kosar et al. confirm
empirically that program comprehension is improved with
DSLs [35]. For validation at the model level to work, the
semantics of the DSL must be clear to everybody involved:
we briefly address this at the beginning of Section 5.4. In
general, non-programmer stakeholders (systems engineers,
healthcare professionals, space scientists) can be integrated
earlier and more efficiently. Note that even if they do not
validate the models directly by inspection or review, the fact
that development becomes more efficient and models can be
simulated before the implementation is finished shortens it-
eration times, thereby making the overall process faster.

Finally, tracing of design, implementation and test arti-
facts to requirements can be more easily supported [70] on
models than on code. Models typically exhibit higher local-
ity of features, they are less “distributed” over the model be-
cause of the closer alignment of the model with the domain;
fewer trace links are required. Fine-grained tracing has been
identified as a major problem with current modeling or pro-
gramming tools [37].

Derivation of Artifacts In critical domains, a substantial
number of documents are required as evidence of the correct
functioning of a CSC, to demonstrate the adherence to the
development process or to make the system’s behaviors un-
derstandable for non-programmer stakeholders and review-
ers. When using DSLs, even though some of the documents
may not strictly be necessary because the models are aligned
with the domain better, reviewers or certification authorities
may still require them. Generating these documents from
models (to the degree possible) ensures consistency with the
actual system and further reduces effort [80]. Examples in-
clude diagrams representing the structure or behavior of the
system as well as trace reports.

4. Motivation and Problem

A LWB can be used to define DSLs optimized for the ap-
plication domain of the CSC. The models created with the
DSL are then used to describe one or more particular CSCs.

LwWB

generate Code compile Binary

Model RTE
generate Data

Figure 1. From the model we generate source code, which
is then compiled to a binary and executed. Alternatively, we
generate data that is interpreted and executed by a runtime
environment (RTE), which is built from its own source code.

The implementation of the CSC is automatically derived
from the model (see Figure 1). The implementation is ei-
ther source code that is then compiled, or data (for example,
XML) that is interpreted by an interpeter in a runtime envi-
ronment (RTE). If the transformation to the executable code
is correct, this leads to significant gains in productivity as we
have discussed in the previous section. However:

The approach can introduce additional failure modes be-
cause of a faulty execution engine. In the case of genera-
tion, errors may lie in the language workbenches’ gener-
ation framework or in the DSL-specific generators. In the
case of interpretation, the interpreter might contain bugs or
the generation of the intermediate format might be faulty.

Correctness of the tool can be assumed if the tool is qualified
(see Figure 2). However, LWBs and the DSLs developed
with them usually cannot be argued to be qualified tools as
defined above: (1) both the LWB itself and the definition of
practically-sized DSLs in these LWBs are too complex to
be formally verified or proven correct in industrial practice,
(2) existing LWBs have not been developed using a safety
process (a particular DSL could be, but that is only of limited
use if the underlying LWB is not), and (3) LWBs are still
niche tools and not widely used, our DSLs are often specific
to a project; a proven-in-use argument is hard to justify.* So:

How can a non-qualified LWB and custom-built DSLs be
used in the development of critical systems? How can we
ensure that they do not introduce faults in the CSC?

In effect, we are left with ensuring end-to-end correctness,
from the model to the implementation; we treat the combina-
tion of model + DSL + generator + LWB as one “untrusted”
black box. Due to the potentially high effort involved, this
runs the risk that many of the aforementioned economic ben-
efits are voided and it may thus be of limited value. The chal-
lenge we address in this paper thus becomes:

How can a non-qualified LWB and custom-built DSLs be
used in the development of critical systems, ensuring that
the approach does not introduce faults into the CSC and
continuing to exploit the benefits afforded by DSLs?

We now describe an approach to solving this challenge, and
validate it with an industry project described in Section 6.

5. Assuring the Correctness of the Code

Execution of the CSC happens on the implementation (gen-
erated code or interpreted in an RTE, see Figure 4), so, ulti-
mately, the implementation must be correct. We assume that
the model has been validated to be correct through the pro-
cesses outlined in the previous section, but due to the ab-
straction gap between models and the implementation (there

4 There are DSLs that are widely used in a particular domain over years such
as Cryptol [42]. In such cases, a proven-in-use argument might be feasible.

Requirements Requirements Requirements

Model Model Model
Language Language Language

Generator F/w Generator F/w Generator F/w

Generator	Generator	Generator

8
L
)
£
o
°
)
=
°
]
&
®
S
g

Non-Qualified LWB

Qualified LWB

CSC Program CSC Program CSC Program

Figure 2. Correctness assumptions (shaded boxes) for dif-
ferent tool chains. (A) When using a qualified modeling tool
with a fixed language, only the requirements and the model
must be validated. (B) In a hypothetical qualified LWB, one
could rely on the generators’ transformation from model to
code, but the language itself would have to be tested. (C) In
the real world of non-qualified LWBs, there is no a-priori
trust for any of the components.

LWB ————————— RTE
—————————#h LT
System Model Mg transform System Implementation Ig
TS
ensures ensures
41_0 T, T ET)
T &V Model M, transform T&V Implementation I,

Figure 3. Baseline tool architecture: fundamentally, all tests
or analyses (T&V) are expressed at the model level (because
this is more convenient and/or productive). However, they
are executed at the level of the implementation.

are more details to go wrong at the implementation level),
or simply because of bugs in the generator or runtime, the
implementation may exhibit behaviours not observed at the
model level. So, while we cannot escape the need to per-
form end-to-end testing (from the model to the implemen-
tation, with all intermediate ingredients), our goal is exploit
the models to make this as efficient as possible. We rely on
the following approach:

We express both the system and the tests or verification
properties on model level and then translate both of them
to the implementation and run them there (Figure 3). This
way we express and validate the semantics on the conve-
nient level of the model (see Section 3), but then execute
and verify the semantics on the (ultimately relevant) im-
plementation level.

Section 5.1 identifies the risks associated with this approach,
and Section 5.2 proposed mititgations; Section 5.3 explains
how practices that are also used in a non-DSL-based devel-
opment process are used in the approach described in this
paper. Section 5.4 outlines further safety mechanisms that
are not directly related to the use of DSL or the correctness
of the generated code, but are still important to overall safety.

The approach works for both tests and static analysis. For
testing, the only requirement is that the DSL has a way of
expressing test scenarios and assertions. For static analysis,

Related
Compensating

Requirements

Model M Model M,
Language Language
Random Error
Trafo TS | | Trafo TT Random Error
Systematic Error

Transformation Engine

Error

CSCProgram || CSCTests

Insufficient
Resources |

HAA

Runtime System

Figure 4. The ingredients of the architecture plus the risks
associated with each component.

the DSL also needs a way of expressing the to-be-verified
properties on model level. Since properties often come with
their own formalism, providing a property specification lan-
guage may be more effort than just supporting the definition
of tests. In addition, the approach only works if an analy-
sis tool for relevant properties is available for the target lan-
guage.’ An example is model checking, which can be done
by translating the model to a tool such as Z3 (note that in
this case, this transformation also has to be assured) but also
at the code level (by encoding the properties in C code as
shown in [49] and [56]).

5.1 Risk Analysis

We have systematically analysed the components involved
in the architecture for possible risks with regards to a faulty
CSC implementation; Figure 4 shows an overview. We refer
to the numbers in the discussion below. Again, we assume
that the requirements and the models have been validated
and thus describe the intended behaviors, which is why we
do not further discuss the risks of a faulty model here. Vali-
dation of the models implicitly also validates the languages
in terms of their suitability to express the models; nonethe-
less we revisit language correctness in Section 5.4. The ma-
jor risks implied in the language, namely its faulty transfor-
mation to executable code, is represented by the two Trafo
(short for transformation) components in Figure 4.

5.2 Assuring the Transformation

In this section we introduce mitigations for the risks identi-
fied above. They are highlighted in SMALL CAPS in the text
below. Figure 5 shows the final architecture with mitigations
included. In particular, we ensure that the system Mg the test
model and Mr are transformed correctly to the implementa-
tion Ig and It by transformations Ts and Tt (see the caption
of Figure 3 for the meaning of the abbreviations).

3 Building our own program analysis tools is completely infeasible in prac-
tice; it is also not recommended, because those tools must be proven in use
(or proven correct) for them to be of any practical use.

[GIEZ#0 Ts has a random error and generates some sys-
tem behaviors wrongly.

Example: When generating a switch-based implementation of a
state machine in C, the break statements are missing, and because
of fallthrough, transitions behave wrongly.

Since the tests in Mt assume the correct behavior, and since
Tt is correct, the tests in It, will fail and detect the error in
Ts. We measure coverage on model level to ensure we have
enough tests to uncover the problem.

m Tt has a random error and generates some test
implementations wrongly.

Example: Because of an error in the way the editor constructs the
model (parsing error, wrong precedence), negative numbers in the
model lose their minus sign; they become positive in the generated
code (or the intermediate representation).

Since the tests in My test the system model Mg correctly,
and since Ty is correct, the tests in I will fail and detect the
error in Tt. Again, we measure coverage on model level to
ensure we have enough tests.

m Tt has a systematic error that results in the
implementation of all (or some class of) tests to be wrong.

Example: In template-based generators it is common to first write a
syntactically correct, but semantically wrong/trivial version of the
to-be-generated code. For example, the developer might initially
implement the generator for some model-level assertion as assert
true and then forget to change the true to reflect the actual con-
dition. All tests will succeed. An example that leads to a particular
class of tests to fail is that part of the generator that computes the
structure of the code for a particular kind of expression throws an
exception. Because the exception is ignored (a bad but common
practice), asserts that use this expression default to true.

These problems can be detected by manually reviewing
some test cases in the generated code or by fuzzing some
of the test cases in Mr; they would then have to fail, but
won’t, because of the faults in the generators.

The implementation of some test cases should be RE-
VIEWed. Alternatively, FUZZING (see Figure 5) should
be used to prevent systematic errors in test cases.

Example Resolved: The assert true test implementations will
succeed, even though fuzzing introduced errors into the code; this
reveals the problem. The same is true for the other example.

For some cases, including the assert true given above,
static analysis of the generator itself can also help. For ex-
ample, assert true could be detected as a constant condi-
tion without side effect, which is always wrong/unnecessary.
Whether this is feasible depends on whether static analysis
for the generation language are available.

Both T and Tt have random errors that are
not realted to each other.

Example: A mix of the above examples.

If the errors are truly unrelated, then the first two cases apply
at the same time and thus some tests will fail; inspection will
reveal the unrelated errors in Tg and Ty so they can be fixed.

G Ts and Ty have unrelated errors, that coinciden-
tally compensat each other.

Example: Ts translates actions in hierarchical state machines
wrongly in terms of their execution order (entry-transition-exit in-
stead of exit-transition-entry). The generator for My translates lists
of assertions in reverse order. Thus the assertions assert the wrong
order which the Ts generator happens to create.

Unrelated errors, by definition, do not result from a (inter-
nally consistent) misunderstanding of the requirements and
a downstream consistent, but ultimately wrong transforma-
tion. Truly unrelated but compensating errors are thus ex-
ceedingly unlikely (cf. the contrived example).

Implement a second, REDUNDANT EXECUTION engine
for both Ms and Mr, for example, through an interpreter.
All tests must succeed in both cases. It is extremely un-
likely for those two to have the same pair of unrelated
but compensating errors.

Example Resolved: The redundant execution engine will not have
the list-related error, so the tests will fail there revealing the prob-
lem in the transformation for the other execution engine.

[GIEZ The two transformations Ts and Tt have related
(technical or functional) errors.

Example: Both Ts and Tt transform a model-level number type
to a C-level int8s instead of the required int16s, leading to
overflow. The tests won’t detect it (because both the actual and
expected value in the assertion wrap around due to overflow), but
the behavior is still semantically wrong.

The relatedness of the two errors in Tt and Ts usually results
from the fact that requirements have been misunderstood
(functional errors) or that the mapping to the target language
is wrongly designed (technical errors). For the errors to
be related and not randomly compensating, they are most
likely the result of the same person or group making wrong
decisions (note that errors in the transformation engine itself
are discussed in the next Risk paragraph).

REDUNDANT EXECUTION reveals the technical errors
because different execution platforms will not require the
same decisions regarding the mapping to the execution
platform. Functional errors should be revealed through
the validation process. To reduce the likelihood of related
errors in the first place, Ts and Tt should be implemented
by DIFFERENT DEVELOPERS.

Example Resolved: The redundant execution in the interpreter
uses Java’s BigDecimal which does not overflow and/or wrap-
around; the execution of the tests in the interpreter will thus diverge
from the execution in the generated code.

G The transformation engine itself has an error.

Example: Polymorphic dispatch in transformation rules is faulty,
applying the wrong transformation rules in some cases.

While this is unlikely for tools that have been used for years,
mitigation of this risk might be required nonetheless:

If you do not trust the transformation engine, make sure
that the REDUNDANT EXECUTION does not use that
same transformation engine. Diverging tests will reveal
the problems.

Example Resolved: The redundant execution in an interpreter does
not rely on the transformation engine and its faulty dispatch; diverg-
ing test failures will reveal the problem.

5.3 Low-Level Code Assurance

We discuss additional steps that are similar to what would
be done in manually written code. However, we point out
specific advantages resulting from the use of DSLs.

Low-level failures because of the specifics of the
implementation code or language.

Example: Stack overflows, numeric precision errors, timing viola-
tions, or invalid pointer derefencings.

To prevent low-level failures as a consequence of specifics
of the execution platform, make sure that all (relevant) code
paths of the implementation are executed.

Measure COVERAGE on Is, on the target platform, and
ensure near-100% coverage for the tests.

If REDUNDANT EXECUTION on engines E; and Ej is used,
and coverage is easier to measure on F; (for example, in the
interpreter) you can also “transfer” the coverage to Es: if
the coverage of tests on F; is sufficient (i.e., close to 100%),
then running the same set of tests on Fy implies a similar
coverage of the relevant code parts there, because the tests
exercise the complete, relevant implementation, whatever its
specific structure may be.

For some languages, static analysis tools that prove the
absence of some classes of errors are available (such as
Astrée [13] or Polyspace for C [50]). At least for typical
errors, their use is straightforward and is recommended.
The code can be generated to use patterns that simplify
the analysis, and semantic annotations can be added that
enable more meaningful analysis (for example, for analyses
based on Frama-C Jessie [14]). The semantic information is

6 Note that there might be additional code/behaviors in Eo that could be
exploited maliciously. We discuss this below.

available in Mg and can be mapped by Ts. An example that
verifies concurrent C programs is given in [15].

Use STATIC ANALYSIS tools to further increase the qual-
ity and reliability of the generated code; generate an-
alyzable patterns via Ts and add semantic annotations
required by the code-level analyzer based on M.

The implementation may be exploited mali-
ciously as part of an attack on the system.

Example: Adversaries intentionally supply too much data, making
a buffer run over its limits.

Because of the degrees of freedom in the implementation,
the system may be attacked by exploiting those degrees of
freedom. Those attacks can usually not be predicted from
the model level, because the model (intentionally) abstracts
from those degrees of freedom. Penetration testing [2] on
implementation level can help prevent those.

Perform PENETRATION TESTING on Ig to ensure the
absence of attack vectors.

The generator can generate potentially more secure code [68],
for example by calling sanitizing functions for all inputs [53].

Automating this through a generator avoids relying on de-

velopers’ consistency when doing it manually.

[GIEZ] Insufficient resources may lead to errors.

Example: A data queue associated with a sensor overflows because
of an unexpectedly high signal rate on the sensor; data is lost, the
system behaves wrongly.

In contrast to a testing or simulation environment, the target
environment may be restricted in terms of memory, process-
ing power or other critical resources, and the program may
fail because it runs out of resources.

Run the tests cases It on the real target hardware, with
real (amounts of) data. Make those limits explicit in the
documentation.

Capturing the expected resource utilization explicitly in Mg
and then monitoring it during execution helps with diagnos-
tics because meaningful error messages can be issued — re-
source starvation is hard to debug otherwise.

G5 The target compiler or runtime system may
have errors.

Example: The interpreter handles operator precedence wrongly.

When using interpretation to execute the models, handling
this risk is mandatory, and conceptually related to the previ-
ously discussed case of faulty transformations. If a genera-
tive approach with a downstream proven-in-use compiler is
used, it is very unlikely that the compiler has errors and one
can probably avoid this step.

Validation

STATIC ANALYSIS
l Review " Walkthrough ||S\'mu\ation | DIFFERENT DEVS BENTESTING

-IWB — % H RTE - 5
LT B f '7] - - 0
System Model Mg tranifo:rm System Implementation Ig
s:
|ensures i Iensures
Ti o
TaV Model M transform TaV Implementation I
REDUNDANT EXECUTION [ILCNSURE COVERAGE

Figure 5. Annotated baseline architecture from Figure 3.
Black boxes represent code verification activities that are
necessary because LWBs and code generation are used; grey
boxes are verification activities that would be done in the
same way if the code was written manually; and white boxes
are activities to validate the quality of the model. The circled
Ts represent traces to requirements.

Execute the system in REDUNDANT EXECUTION engines
to find problems in either of them; for the generative
approach, this may involve the use of different compilers.

Essentially, one can treat the transformation/compilation/run-
time stack as a black box and use redundancy and test diver-
gence to find errors in either of them.

5.4 Additional Safety Mechanisms

In addition to the risks identified in this paper, other things
can go wrong in critical systems; many of those mentioned
mentioned by Koopman in [34] are relevant. In this section
we discuss a few of them that are especially relevant.

Well-defined Language Users of the DSLs have to under-
stand its semantics to be able to create correct Mg and Mt
models, and to validate those. The same is true for the devel-
opers of Ts and T so they can “implement” these semantics
in Ig and It. To this end, a clear definition of the language
and its semantics is needed. For the end user, the tests in Mt
or the ability to simulate the execution of the models can
help with understanding the semantics.

QA’ing the Language This paper presupposes that we can-
not assure the correctness of the DSLs and the transforma-
tions themselves (although there is work on this [1, 45, 63]),
which is why we propose an architecture that remedies re-
sulting risks. Nonetheless, the DSLs should be systemati-
cally tested and verified to the degree this is practical. Work
on language testing includes execution semantics [81], static
semantics [18], grammars and concrete syntax [39] as well
as multi-aspect testing frameworks [31, 55]. Ratiu and Voel-
ter specifically discusses language testing in MPS [55], using
manually written type system tests, automatically generated
test cases for language structure and syntax, and measuring
transformation coverage.

Quality of Generated Code Some domains require code
to conform to particular guidelines. For example, C code
in automotive systems is expected to conform to MISRA-
C [48] to improve readability and to prevent the use of lan-
guage constructs that are hard to understand (and analyze),
lead to unspecified behaviour or trigger known errors in the
compiler (see Section 5.3, Target compiler may be buggy).
Compliance can be checked by tools, for example the one by
LDRA.” Generating code that conforms to such guidelines is
easy if the transformation developer is aware of them. The
strictness of the guidelines may be reduced for generated
code. For example, customers have granted us MISRA ex-
ceptions for generated polymorphic dispatch code that uses
(otherwise prohibited) void pointers.

Architectural Mechanisms In this paper, we discuss how
measures in the development process and tools can assure
CSC correctness. An orthogonal approach is runtime moni-
toring and fault detection [22], which transitions the system
into a safe state if a fault is detected. In medical systems,
a safe state may be to pop up a message that tells the user
to disregard the software and call her doctor. Examples of
architectural mechanisms for runtime monitoring are check-
sums (to detect random bitflips), redundant sensors (to de-
tect faulty sensors), monitoring of timing or resource con-
sumption (to detect emerging resource contention), or sepa-
rately specified validation rules for data or behavior (similar
to tests, specified separately by a separate developer, to avoid
common cause errors). The implementation of some of these
mechanisms can be automated through the transformations,
leading to a reusable safety-aware platform for specific do-
mains (an example for avionics is presented in [20]).

5.5 Summary of the Approach

Figure 5 summarizes the overall approach: we express both
the system and the tests or verification properties on model
level and then translate both of them to the implementation
and run them there. This way we express and validate the
semantics on the convenient level of the model, but then ex-
ecute and verify the semantics on the implementation level.
To address the remaining risks, we

* use redundant execution on two execution engines,

* use different developers for the two transformations,
* review a subset of the generated code,

* clearly define and QA the DSL,

* to use fuzzing on the tests,

* ensure high coverage for the tests,

* run the tests on the final device,

* perform static analysis on the generated code,

* perform penetration testing on the final system,

* and use architectural safety mechanisms.

"http://www.ldra.com/en/software-quality-test-tools/
group/by-coding-standard/misra-c-c

Only the first four, those printed in italics, are specific to our
use of DSLs and LWBs; the others would be performed in
any case. We now evaluate this approach with a case study
in the healthcare domain, emphasising how the use of DSLs
impacts these activities and their economic feasibility.

6. Case Study in the Healthcare Domain

In this section we validate our approach with a case study
from the healthcare domain. In particular, we discuss the
DSL-based development of software medical devices at Vol-
untis as part of the PLUTO project. The development pro-
cess has to conform to the requirements of the Food and
Drug Agency (FDA) for the device to be used in practice.

6.1 FDA Requirements on Medical Software

Selling software in a medical context in the US requires au-
thorization from the FDA.® The FDA defines the notion of a
Software as a Medical Device (SaMD), which is a software-
only solution for diagnosing or treating diseases.’ In the
relevant FDA documents'? an SaMD is classified by Level
of Concern (LOC): Minor, Moderate, and Major. Both the
SaMD and any off-the-shelf software that is used in the
SaMD require a hazard analysis, basic documentation, haz-
ard mitigation, and a description and justification of residual
risk. If after hazard mitigation the LOC is still High, they
require so-called special documentation.

Basic documentation encompasses a description of what
the software is, the hardware it requires, how the end user is
guided (to help avoid risks that result from wrong usage), as
well as a discussion of QA and maintenance processes. The
hazard analysis encompasses a list of all potential hazards,
their estimated severity and possible causes. The hazard mit-
igations then describe how the design of the system mit-
igates'! these hazards, including protective measures, user
warnings, user manuals or special labelling materials. The
required justification of residual risk then usually does not
contain any remaining ignificant risks.'?

Software with a high level of concern also requires spe-
cial documentation, i.e., assurances that the development
process is appropriate and sufficient for the intended use.
For DSL-based development, this includes systematic man-

8 Other jurisdictions have other regulating bodies. But the FDA is generally
considered to be the most stringent one, so it is commonly used as the
benchmark.

“http://www.imdrf.org/docs/imdrf/final/technical/
imdrf-tech-131209-samd-key-definitions-140901.pdf

10 https://www.fda.gov/downloads/medicaldevices/
deviceregulationandguidance/guidancedocuments/ucm073779.pdf
https://www.fda.gov/downloads/medicaldevices/
deviceregulationandguidance/guidancedocuments/ucm524904.pdf
"TThe notion is to mitigate them to As Low As Reasonably Possible
(ALARP).

1215 some cases, some High risks could remain, but then it is up to the man-
ufacturer to document that the risk/benefit ratio is better than the already
existing solutions. This would still be accepted by the FDA since there is
still a benefit.

agement of the requirements for the DSLs, tracing of re-
quirements to the language definition, as well as the well-
definedness of the language and sufficient testing (see De-
fined Language and Language QA in Section 5.4).

The FDA has found that the majority of software-related
device failures are due to design errors:'® the most common
problem was failure to validate software prior to routine use.
DSLs can help with this; see Section 3. As discussed in Sec-
tion 5, LWBs and DSLs introduce additional hazards, and we
also show in Section 5 how these are mitigated in principle.
Voluntis are confident that the benefits of introducing DSLs
and LWBs will outweigh their risks and thus produce a bene-
ficial risk-benefit ratio, accelerating the production scale-up
and reducing the cost of QA of medical device software. The
goal of this case study is to prove this point.

Since the documentation requirements are essentially
similar to other high risk software components, we do not
discuss the details in this case study. In the remainder of this
chapter we illustrate how we have implemented the techni-
cal means of ensuring the quality of the CSC in the context
of the Voluntis PLUTO project.

6.2 Business Context

Because of the safety implications discussed in this pa-
per, the development of SaMDs is expensive and time-
consuming. The well-known fact that fixing errors becomes
more expensive the later they are found during develop-
ment [51, 52] is exacerbated in the healthcare domain be-
cause much of the test, documentation and review processes
required by the standards has to be repeated.

Voluntis’ SaMDs are used to help healthcare profes-
sionals (HCPs) manage and treat diseases, to calculate the
dosage of medication, and manage side-effects of oncology
therapies by providing alerts to HCP and medical recom-
mendations to patients. They are realized as web pages and
mobile apps, both for Android and i0OS. The underlying al-
gorithms are inherently complicated, and their safety and
effectiveness must be ensured. For the reasons given above,
it is crucial for Voluntis’s business success to establish an
SaMD algorithm development process that reveals errors in
medical algorithms early, and not only when they are de-
ployed on the mobile device for prototype use, or even when
they are in the hands of users.

Voluntis has decided on a DSL-based approach that uses
models for defining and validating the algorithms in order to
benefit from the early validation and simplified review with
HCPs discussed in Section 3. The abstraction of the core
behaviors also helps avoid duplicate implementation effort
for Android and i0S. On the flip side, this requires verifying
the correctness of the CSC derived from the models.

Bhttps://www.fda.gov/downloads/AboutFDA/CentersOffices/
0fficeofMedicalProductsandTobacco/CDRH/CDRHTransparency/
UCM388442.pdf

Modeling Environment

Model		Platform Adapter		
Language		Interpreter		
Generator		Interpreter		Loader

L | |
XML XML

Figure 6. Overview of the overall tool and system architec-
ture; see the running text in Section 6.3 for details.

6.3 Overview of the System and Tools

Figure 6 shows an overview over the system. A model-
ing environment is used by mixed teams of medical/tech-
nical professionals to design the algorithms underlying the
SaMD. They rely on a set of DSLs built specifically for
PLUTO which provide abstractions and notations meaning-
ful to HCPs (Figure 7). These include decision tables, deci-
sion trees and numbers with ranges, but also state machines
to capture the asynchronous, event-based, time-sensitive ex-
ecution of the algorithms. Additional languages support is
available for defining tests and simulation scenarios as well
as for specifying various configuration options for visualiza-
tions and simulations. The DSLs are described in some more
detail in Appendix A.

At the core is a simple functional expression language
called KernelF. KernelF'* has not been developed specifi-
cally for PLUTO; it is an embeddable functional language
developed by itemis that has been used in several DSLs
in various domains. Of KernelF’s 260 concepts, only 83
are availabe in PLUTO; the removed!? concepts have either
been deemed unnecessary in the domain (for example, op-
tion types) or have been replaced with alternatives that more
closely resemble the medical domain (decision trees and ta-
bles). Appendix A provides a few more details about the
PLUTO languages and also contains example code.

The sizes of the PLUTO languages are shown in Table 1.
To put the size and the associated challenge of ensuring cor-
rectness into perspective, we compare to mbeddr [69], a set
of C extensions for embedded software development imple-
mented with the same LWB technology as PLUTO. mbeddr
has ca. 1,600 language constructs [73], and its correctness
has been ensured, mainly through testing, to the point where
it was successfully used for commercial software develop-
ment [72]. The PLUTO languages are roughly one sixth in
size, which makes ensuring correctness considerable easier
than in mbeddr. In addition, about one third of the PLUTO

“http://voelter.de/data/pub/kernelf-reference.pdf

15 In addition to extension, the ability to remove language concepts that are
not needed as part of a specific DSL is an important ingredient to making
an embeddable language truly reusable.

languages is reused from KernelF, further reducing effort
and providing a solid foundation in terms of correctness.

The DSLs are built with MPS, and the modeling environ-
ment is a stripped-down version of MPS as well. The en-
vironment comes with an interpreter that is able to run the
algorithms for simulation and testing directly in the mod-
eling environment. The functional core reuses the existing
interpreter for KernelF.

Because of deployment constraints (in particular, the time
it takes Apple to review apps on the app store), the execution
of the algorithms on mobile phones does not rely on gener-
ated binary code. Instead, the runtime environment embed-
ded in the mobile applications contains a (second, different)
interpreter written in C++ which, after separate compilation,
runs both on Android and iOS. The interpreter consumes the
algorithms in the form of XML files created by a generator
in the IDE and shipped over the network to the user’ devices.
Platform-specific libraries and frameworks (whose verifica-
tion and validation is outside the scope of this paper) are
used for integration with the two platforms, for example, for
accessing sensors and system values, storing data and Ul

At the core of the challenge thus was ensuring the cor-
rectness of the XML generator as well as the interpreter in
the runtime; we focus on those below. In addition, the correct
transfer of the XML to the devices had to be cryptographi-
cally ensured, and the algorithm had to be versioned to en-
sure reproducibility of an algorithm’s execution for a given
patient. We do not cover these aspects in this paper.

6.4 Current State

Version one of the system is implemented and tested. Vol-
untis is planning to release their next-generation products on
PLUTO in late 2018. It is a major business concern for Vol-
untis to obtain the FDA clearances for their software med-
ical devices promptly. Therefore, a team of regulatory ex-
perts meticulously challenges and prepares the technical files
to ensure they are fit for FDA clearance before submitting
them. As of April 2018 the clearance for a new SaMD based
on PLUTO has passed the pre-submission phase without any
concerns from the FDA regarding the proposed approach.
Going into detail about the intricacies of the clearance
would be a different paper; we just provide a very brief out-
line. FDA clears the complete SaMD, end-to-end. We treat

Language Part ‘ # of concepts ‘ percentage of total
Expressions (KernelF) 83 31%
Expressions (Extended) 63 23%
State Machines 29 11%
Testing, Scenarios 41 15%
Configuration ‘ 54 ‘ 20%
Total \ 270 \ 100%

Table 1. Size breakdown of the PLUTO languages. One
third of the overall language was reused from KernelF.

Configuration
for visualizations, simulations and documentation

A 4 4
State Machines Test and Scenarios

components, parameters, test vector generation, algo
instantiation, states, instantiation, user
transitions, events interaction/events

h 4 h 4

KernelF Extensions
decision trees and tables, time units, durations

h 4
KernelF Expressions

binary ops, if-then-else, primitive types and literals, collections

Figure 7. Overview of the various parts of the languages
used to implement SaMDs. Arrows represent dependencies;
shading indicates that only ca. 1/3 of KernelF was used in
this language.

the SaMD developed using the DSL like any other, manually
created SaMD. This means that we have to demonstrate and
document that that our SaMD has been conceived, verified
and validated as extensively as possible. As we describe be-
low, we have achieved test coverage of 100% with regards
to the medical algorithms, so we expect no problems here.
The reusable runtime environment, including the interpreter,
will be treated as off-the-shelf software (OTSS). OTSS has
its own requirements regarding safety. In the end it also boils
down to demonstrating test coverage. This includes the man-
ual tests for the framework parts, but also the interpreter tests
(which is why 100% coverage for the interpreter are useful).

Later in 2018 the DSLs will evolve further to support ad-
ditional language constructs necessary for additional cate-
gories of algorithms. While the algorithms so far have em-
phasized timing and process, future algorithms will be more
sophisticated in terms of querying and filtering of data and
computation of derived values. We are also evaluating the
integration of analysis tools into the IDE. For example, an
SMT solver!® can be used to statically check the complete-
ness and overlap-freedom of hierarchical boolean expres-
sions (those found in decision trees and tables). The solver
integration is already available for KernelF [74] and can be
extended to the Voluntis DSLs straightforwardly. In addition,
a model checker could be used to verify the absence of dead-
end or unreachable states in the state machine.

6.5 Development Tool Architecture

The architecture in Figure 5 is designed to address the risks
described in Section 5.2 and Section 5.3. In this section we
describe how this architecture was implemented for PLUTO.

Validation As suggested in Section 3, validation of the al-
gorithm is simplified by using the DSL. The decision trees
and decision tables are suitable for review directly by HCPs.

1o https://en.wikipedia.org/wiki/Satisfiability_modulo_theories

The state machine requires a degree of fluency in computa-
tional thinking [79] that not all HCPs have, which is why a
linearized visualization of the algorithm is generated for re-
view. At the core of the validation is the ability to execute
the algorithms in the IDE based on the in-IDE interpreter. A
simulator makes use of this interpreter to let HCPs simulate
the behavior of the models, resembling the interaction with
the algorithm on the patient’s phone. Particular executions
of the simulator can be recorded into test cases for automatic
re-execution and detection of regression errors.

One particular example for the usefulness of the inter-
preter is the following. Bluejay is a blood pressure algo-
rithm. We ran simulations with HCPs from key stakehold-
ers (among them oncologists from a renowned US partner
oncology hospital, and a pharma partner). In one case, the
scenario covered a patient who had her blood pressure go up
quickly over 3 days and had to go to the emergency room.
We reran the simulation with the same values entered by the
patient over the 3 days, moving forward in time with the
simulator. This confirmed that the algorithm behaved as ex-
pected and that the patient did not follow the instructions
(which led to the emergency room). The simulation took less
than five minutes in a conferene call with the doctors.

Redundant Execution The full algorithm behavior and
the tests are executed redundantly with the in-IDE inter-
preter and with the C++-based interpreter in the runtime en-
vironment. For the functional core, the existing interpr