
Using Language Workbenches and Domain-Specific Languages
for Safety-Critical Software Development

Markus Voelter
independent / itemis AG

voelter@acm.org

Bernd Kolb, Klaus Birken
itemis AG

{kolb|birken}@itemis.de

Federico Tomassetti
independent

federico@tomassetti.me

Patrick Alff, Laurent Wiart
Voluntis

{Patrick.Alff|Laurent.Wiart}@voluntis.com

Andreas Wortmann
OHB System AG

andreas.wortmann@ohb.de

Arne Nordmann
Bosch Corporate Research

arne.nordmann@de.bosch.com

Abstract
Language workbenches support the efficient creation, in-
tegration and use of domain-specific languages. Typically,
they execute models by code generation to programming
language code. This can lead to increased productivity and
higher quality. However, in safety-/mission-critical environ-
ments, generated code may not be considered trustworthy,
because of the lack of trust in the generation mechanisms.
This makes it harder to justify the use of language work-
benches in such an environment. In this paper we demon-
strate an approach to use such tools in critical environments.
We argue that models created with domain-specific lan-
guages are easier to validate, and that the additional risk re-
sulting from the transformation to code can be mitigated by
a suitably designed transformation and verification architec-
ture. We validate the approach with an industrial case study
from the healthcare domain. We also discuss the degree to
which the approach is appropriate for critical software in
space, automotive and robotics systems.

1. Introduction
In safety-critical systems, hardware and software compo-
nents require a higher level of trust compared to non-critical
contexts because system failures may lead to financial loss
(finance), loss of non-replaceable systems (space), environ-
mental damage (power plants) or user harm or death (health-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
, .
Copyright © ACM [to be supplied]. . . $15.00.
http://dx.doi.org/10.1145/

care). The higher a system’s criticality, the more confidence
must be provided regarding its proper functioning. Confi-
dence can be built by architectural means in the system it-
self (such as redundancies) and by following particular well-
defined development processes. The latter includes tools,
programs used for constructing the system. It has to be en-
sured and documented that the use of those tools does not in-
cur additional errors in a critical software component (CSC).

Development of critical systems is governed by stan-
dards, specific to the particular domain; all of them are un-
derstandably conservative. For example, they require the
use of well defined, unambiguous language subsets of C or
Ada or proven model-driven development tools like Mat-
lab Simulink. Defining custom domain-specific languages
(DSLs) with specific code generators or interpreters is,
at first glance, at odds with this conservative perspective.
However, there are also benefits, in particular for valida-
tion, which is why it is desirable to use those tools in
safety-critical contexts. This paper explains this conflict and
demonstrates a practically proven way to overcome it.
Contributions This paper makes four contributions: (1) an
analysis of the risks involved in using DSLs and language
workbenches (LWBs) regarding the introduction of faults
into a CSC, (2) an architecture for mitigating these risks, (3)
a case study from the healthcare domain that validates the
architecture, and (4) brief discussions of the applicability of
the approach to three other safety-critical domains.
Structure We provide some background to our approach
and define important terms in Section 2. The advantages of
using LWBs and DSLs are recapped in Section 3; this serves
as the motivation of why one would want to use DSLs in
the first place. We then define the problem associated with
the lack of trust in DSLs and generators in Section 4. Our
first two contributions, the risk analysis, as well as the mit-
igations we propose, follows in Section 5. The validation

through the detailed case study with Voluntis’ medical com-
panion apps is covered in Section 6, the applicability to other
domains is briefly discussed in Section 7. We conclude the
paper with related work, a discussion and conclusions plus
future work in Sections 8 through 10.

2. Background
2.1 Safety, Standards and Tools
Domains and Standards Critical systems are found in
domains such as railway, healthcare and medicine, robotics,
aerospace or automotive. Each domain has different regu-
latory bodies, different organizational and cost structures
and different development philosophies; for example, cars
are developed differently from airplanes because of the
paramount importance of unit cost in the automotive indus-
try. These differences are captured in each domain’s safety
standards such as DO-178C for aviation, EN50129 for rail,
IEC62304 for medical device software or ISO26262 for au-
tomotive systems. These standards all reflect the philoso-
phies expressed in the generic safety standard IEC61508.
Tools The standards describe requirements for tools used in
the development of critical systems. For the development of
critical software (as opposed to systems), three categories of
tools are relevant: development tools create artifacts that ex-
ecute as part of a CSC (for example, compilers, code genera-
tors); analysis tools ensure some aspect of correctness of the
CSC (for example, code style checkers, data flow analyzers);
and management tools support the development process (for
example, managing requirements or test results). Develop-
ment tools, of which LWBs and DSLs are examples, imply
the biggest risk, because they may introduce additional sys-
tematic errors into the CSC if they are faulty. The standards
in all domains require the reliable mitigation of such errors
by limiting the permitted tools, introducing redundancy in
the CSC, as well as requiring adherence to specific develop-
ment processes as well as extensive documentation.
Tool Reliability and Mitigation Strategies Some develop-
ment tools, such as Scade,1 can be assumed to work correctly
and to not introduce errors into a CSC; no project-specific
mitigations must be put in place. Such tools are called qual-
ified tools. Each domain standard has specific ways of qual-
ifying a tool, but three general approaches exist: (1) Provide
proof and/or extensive validation that the tool is correct. (2)
The tool itself has been developed with a process that follows
a safety standard. (3) A specific version of a tool has been
“proven in use”, which means that it has been used success-
fully in many similar projects, reports about malfunctioning
of the tool have been collected and process-based mitiga-
tions (for example, though additional testing) are defined;
projects that use a tool from this category must then docu-
ment that they use the mitigations.

1 http://www.esterel-technologies.com/products/scade-suite/

2.2 DSLs and Language Workbenches
Domain-Specific Languages DSLs are computer lan-
guages optimized for expressing programs in a particular
domain [62]. They may have different degrees of expressiv-
ity – from simple structure languages to Turing complete
languages – and use a wide variety of notations such as text,
tables, symbols, math, diagrams [67]. Importantly, the ab-
stractions and notations used in the DSL are aligned with the
particular domain at which the DSL is targeted; this is the
core difference to general-purpose programming languages,
whose abstractions are generic. Many DSLs are used by peo-
ple who are competent in the domain, but who are not nec-
essarily developers. For those DSLs, notations that reflect
the domain are especially important, even if those might not
resemble popular syntax from general purpose languages.
Language Workbenches A language workbench is a tool
that efficiently supports the development of languages, of-
ten, but not necessarily, DSLs; the report from the language
workbench challenge [17] provides a good overview. They
typically provide a set of DSLs to define various aspects
of languages, such as structure, syntax, static semantics, dy-
namic semantics (usually through interpreters or generators)
as well as various aspects relating to IDEs (code completion,
syntax coloring, goto definition, find usages, refactorings).
Jetbrains MPS MPS2 is an open source language work-
bench developed by Jetbrains over the last 15 years. While
not used as widely as some other language workbenches,
it is used to implement interesting languages for real-world
use. Its distinguishing feature is its projectional editor, which
supports practically unlimited language extension and com-
position [65] as well as a flexible mix of a wide range of tex-
tual, tabular, mathematical and graphical notations [67]. The
experience of using MPS for implementing a large set of C
extensions in the context of mbeddr [71] is discussed in [73];
the paper provides a detailed assessment of the strengths and
limitations of MPS for large-scale language development.
Model vs. Program The two terms are used differently in
programming language and modeling communities. In par-
ticular, there is sometimes a distinction between the general
notion of a model and an executable model. A program can
then be seen as an executable model. Models can also be re-
garded as a system’s description that is more abstract (i.e.,
contains fewer details) than a program; a program “imple-
ments” the model. In this paper, we avoid the philosophical
differences and instead use the following pragmatic defini-
tions: every artifact that is expressed with a language de-
fined in a language workbench is called a model. Artifacts
expressed outside the LWB, i.e., typically some generated or
manually written code expressed in a general-purpose lan-
guage, we call a program.
Execution Engine The models created with a DSL can be
executed either by code generation to a lower level program-

2 http://jetbrains.com/mps

ming language (which is then in turn compiled) or through
interpretation where the program is traversed and the seman-
tics of each syntax element is applied (this may happen ei-
ther directly on the program syntax tree or on an interme-
diate represenation that is derived from the program). Both
approaches have their own benefits and drawbacks, mostly
regarding performance and deployment effort; however, in
many context the two are interchangeable. We use the term
execution engine to refer to both generation/compilation/ex-
ecution and interpretation with potential generation of an in-
termediate representation.

2.3 Verification and Validation
Verification vs. Validation Verification ensures that the
software works without intrinsic faults. The to-be-verified
properties are either implied by the programming or model-
ing formalism (such as uninitialized reads, invalid derefer-
encing of pointers or unreachable states) or explicitly speci-
fied through test cases or property specifications (postcondi-
tions for functions or specific temporal logic properties for
state machines). Verification is performed by software de-
velopers. Validation ensures that the software does what the
requirements specify. Example validation activities include
requirements review, simulation, acceptance tests or tracing
of implementation artifacts to requirements. Not all of these
can be automated and some of them are performed by stake-
holders other than developers. There is consideral variability
in how these terms are defined in various domains (for ex-
ample, the FDA has a definition for medical devices3), but
they all fit roughly with the distinction defined here.
Verification through Testing or Analysis A test case runs
the CSC through its (possibly test-specific) APIs, asserting
that it reacts correctly to specific stimuli. Static analysis does
not run the program, instead it analyzes program code for a
class of faults, possibly relative to previously user-specified
verification properties. Examples include checking the sat-
isfiability of sets of Boolean conditions, checking temporal
properties on state machines or using abstract interpretation
for ruling out runtime errors such as division by zero.
Coverage Both testing and static analysis suffer from the
coverage problem: a fault is only detected if the engineer
writes a test case or specifies a verification property that is
able to detect that fault. As a remedy, code reviews may find
that some tests/properties are missing, various kinds of cov-
erage [77] may be measured by tools, or test generation [10]
may automatically raise coverage to a required level.

3. The Benefits of DSLs and LWBs
Our argument relies on the claim that it is desirable to per-
form as many development activities as possible on a suit-
ably abstract model. While we provide some backing in this
section, we assume that the reader accepts this claim, based

3 https://www.fda.gov/MedicalDevices/
ucm085281.htm#_Toc517237938

on their own experience and the extensively documented
productivity benefits of modeling, DSLs, code generation
and tools [6, 7, 25, 29, 30, 32, 43, 44, 72]. We include this
chapter in this paper even though it is not a contribution,
because we refer to the benefits from the case study in Sec-
tion 6, which also confirms many of these benefits.
Implementation Effort A DSL can reduce the imple-
menation effort as a consequence of its more appropriate,
higher level abstractions. DSL code is typically more con-
cise and requires less boiler-plate than functionally equiv-
alent programming language code [72]. Targeting multiple
platforms amplifies this benefit. Low-level mistakes (for ex-
ample, faulty pointer arithmetics in C) are prevented. IDE
support can also be better because the domain-related se-
mantics of the DSL can be known by the IDE.

Note that in critical software, the implementation is not
where most of the effort is spent; instead, it is spent in
validation and verification (for example, Voluntis calculates
three times more effort for validation and verification than
for implementation). However, taken together with the val-
idation and verification advantages outlined below, a more
efficient implementation allows faster iterations, thus signif-
icantly contributing to overall efficiency.
Verification and Test Models expressed with a suitable
DSL avoid the need to “reverse-engineer” domain semantics
from low-level implementation code, simplifying verifica-
tion and test. For example, if state machines are represented
first-class as opposed to, for example, switch-statements in
C, an automated analysis to detect dead or unreachable states
is much simpler to perform and hence, to implement [74].
Another example is the use of decision tables instead of
nested if statements. The semantics of the decision table
imply that it has to be complete (all combinations of inputs
must be covered) and overlap-free (for every input, only one
branch is valid). A solver can be used to check for these
properties [56, 74]. A structure composed from if state-
ments cannot be assumed to imply these semantics.

Verification properties or test cases can also be expressed
at the higher level of abstraction, thus making verification
more efficient. For example, properties about the state ma-
chine can directly refer to states and events, and test cases
can explicitly trigger events and assert states. Verification
results can be reported at the level of the domain abstrac-
tions [49], even though the lifting of low-level verification
results back to the domain level can be non-trivial (there is
a whole section (4.1) on testing lifting algorithms in [55]).
Clearer semantics are also useful for test case generation.
For example, variables can be annotated with ranges or other
constraints; the test case generator can use those as the
boundaries for the tests (instead of the system-specific, and
domain-irrelevant, MAX_INT and MIN_INT boundaries).
Validation Models can be used to front load [47] valida-
tion, reducing the cost of errors [5]. Models can be simulated
and tested to ensure that they behave correctly; this approach

is called model-in-the-loop testing (in systems engineering)
or quality-by-design (in the pharmaceutical industry). Val-
idation also involves reviews by other developers or by a
separate QA team. Models that use appropriate abstractions
and notations make reviews more efficient because they are
easier to comprehend and easier to relate to requirements
because the semantic gap is narrower; Kosar et al. confirm
empirically that program comprehension is improved with
DSLs [35]. For validation at the model level to work, the
semantics of the DSL must be clear to everybody involved:
we briefly address this at the beginning of Section 5.4. In
general, non-programmer stakeholders (systems engineers,
healthcare professionals, space scientists) can be integrated
earlier and more efficiently. Note that even if they do not
validate the models directly by inspection or review, the fact
that development becomes more efficient and models can be
simulated before the implementation is finished shortens it-
eration times, thereby making the overall process faster.

Finally, tracing of design, implementation and test arti-
facts to requirements can be more easily supported [70] on
models than on code. Models typically exhibit higher local-
ity of features, they are less “distributed” over the model be-
cause of the closer alignment of the model with the domain;
fewer trace links are required. Fine-grained tracing has been
identified as a major problem with current modeling or pro-
gramming tools [37].
Derivation of Artifacts In critical domains, a substantial
number of documents are required as evidence of the correct
functioning of a CSC, to demonstrate the adherence to the
development process or to make the system’s behaviors un-
derstandable for non-programmer stakeholders and review-
ers. When using DSLs, even though some of the documents
may not strictly be necessary because the models are aligned
with the domain better, reviewers or certification authorities
may still require them. Generating these documents from
models (to the degree possible) ensures consistency with the
actual system and further reduces effort [80]. Examples in-
clude diagrams representing the structure or behavior of the
system as well as trace reports.

4. Motivation and Problem
A LWB can be used to define DSLs optimized for the ap-
plication domain of the CSC. The models created with the
DSL are then used to describe one or more particular CSCs.

Figure 1. From the model we generate source code, which
is then compiled to a binary and executed. Alternatively, we
generate data that is interpreted and executed by a runtime
environment (RTE), which is built from its own source code.

The implementation of the CSC is automatically derived
from the model (see Figure 1). The implementation is ei-
ther source code that is then compiled, or data (for example,
XML) that is interpreted by an interpeter in a runtime envi-
ronment (RTE). If the transformation to the executable code
is correct, this leads to significant gains in productivity as we
have discussed in the previous section. However:

The approach can introduce additional failure modes be-
cause of a faulty execution engine. In the case of genera-
tion, errors may lie in the language workbenches’ gener-
ation framework or in the DSL-specific generators. In the
case of interpretation, the interpreter might contain bugs or
the generation of the intermediate format might be faulty.

Correctness of the tool can be assumed if the tool is qualified
(see Figure 2). However, LWBs and the DSLs developed
with them usually cannot be argued to be qualified tools as
defined above: (1) both the LWB itself and the definition of
practically-sized DSLs in these LWBs are too complex to
be formally verified or proven correct in industrial practice,
(2) existing LWBs have not been developed using a safety
process (a particular DSL could be, but that is only of limited
use if the underlying LWB is not), and (3) LWBs are still
niche tools and not widely used, our DSLs are often specific
to a project; a proven-in-use argument is hard to justify.4 So:

How can a non-qualified LWB and custom-built DSLs be
used in the development of critical systems? How can we
ensure that they do not introduce faults in the CSC?

In effect, we are left with ensuring end-to-end correctness,
from the model to the implementation; we treat the combina-
tion of model + DSL + generator + LWB as one “untrusted”
black box. Due to the potentially high effort involved, this
runs the risk that many of the aforementioned economic ben-
efits are voided and it may thus be of limited value. The chal-
lenge we address in this paper thus becomes:

How can a non-qualified LWB and custom-built DSLs be
used in the development of critical systems, ensuring that
the approach does not introduce faults into the CSC and
continuing to exploit the benefits afforded by DSLs?

We now describe an approach to solving this challenge, and
validate it with an industry project described in Section 6.

5. Assuring the Correctness of the Code
Execution of the CSC happens on the implementation (gen-
erated code or interpreted in an RTE, see Figure 4), so, ulti-
mately, the implementation must be correct. We assume that
the model has been validated to be correct through the pro-
cesses outlined in the previous section, but due to the ab-
straction gap between models and the implementation (there

4 There are DSLs that are widely used in a particular domain over years such
as Cryptol [42]. In such cases, a proven-in-use argument might be feasible.

Figure 2. Correctness assumptions (shaded boxes) for dif-
ferent tool chains. (A) When using a qualified modeling tool
with a fixed language, only the requirements and the model
must be validated. (B) In a hypothetical qualified LWB, one
could rely on the generators’ transformation from model to
code, but the language itself would have to be tested. (C) In
the real world of non-qualified LWBs, there is no a-priori
trust for any of the components.

Figure 3. Baseline tool architecture: fundamentally, all tests
or analyses (T&V) are expressed at the model level (because
this is more convenient and/or productive). However, they
are executed at the level of the implementation.

are more details to go wrong at the implementation level),
or simply because of bugs in the generator or runtime, the
implementation may exhibit behaviours not observed at the
model level. So, while we cannot escape the need to per-
form end-to-end testing (from the model to the implemen-
tation, with all intermediate ingredients), our goal is exploit
the models to make this as efficient as possible. We rely on
the following approach:

We express both the system and the tests or verification
properties on model level and then translate both of them
to the implementation and run them there (Figure 3). This
way we express and validate the semantics on the conve-
nient level of the model (see Section 3), but then execute
and verify the semantics on the (ultimately relevant) im-
plementation level.

Section 5.1 identifies the risks associated with this approach,
and Section 5.2 proposed mititgations; Section 5.3 explains
how practices that are also used in a non-DSL-based devel-
opment process are used in the approach described in this
paper. Section 5.4 outlines further safety mechanisms that
are not directly related to the use of DSL or the correctness
of the generated code, but are still important to overall safety.

The approach works for both tests and static analysis. For
testing, the only requirement is that the DSL has a way of
expressing test scenarios and assertions. For static analysis,

Figure 4. The ingredients of the architecture plus the risks
associated with each component.

the DSL also needs a way of expressing the to-be-verified
properties on model level. Since properties often come with
their own formalism, providing a property specification lan-
guage may be more effort than just supporting the definition
of tests. In addition, the approach only works if an analy-
sis tool for relevant properties is available for the target lan-
guage.5 An example is model checking, which can be done
by translating the model to a tool such as Z3 (note that in
this case, this transformation also has to be assured) but also
at the code level (by encoding the properties in C code as
shown in [49] and [56]).

5.1 Risk Analysis
We have systematically analysed the components involved
in the architecture for possible risks with regards to a faulty
CSC implementation; Figure 4 shows an overview. We refer
to the numbers in the discussion below. Again, we assume
that the requirements and the models have been validated
and thus describe the intended behaviors, which is why we
do not further discuss the risks of a faulty model here. Vali-
dation of the models implicitly also validates the languages
in terms of their suitability to express the models; nonethe-
less we revisit language correctness in Section 5.4. The ma-
jor risks implied in the language, namely its faulty transfor-
mation to executable code, is represented by the two Trafo
(short for transformation) components in Figure 4.

5.2 Assuring the Transformation
In this section we introduce mitigations for the risks identi-
fied above. They are highlighted in SMALL CAPS in the text
below. Figure 5 shows the final architecture with mitigations
included. In particular, we ensure that the system MS the test
model and MT are transformed correctly to the implementa-
tion IS and IT by transformations TS and TT (see the caption
of Figure 3 for the meaning of the abbreviations).

5 Building our own program analysis tools is completely infeasible in prac-
tice; it is also not recommended, because those tools must be proven in use
(or proven correct) for them to be of any practical use.

RISK 1 TS has a random error and generates some sys-
tem behaviors wrongly.
Example: When generating a switch-based implementation of a
state machine in C, the break statements are missing, and because
of fallthrough, transitions behave wrongly.

Since the tests in MT assume the correct behavior, and since
TT is correct, the tests in IT, will fail and detect the error in
TS. We measure coverage on model level to ensure we have
enough tests to uncover the problem.

RISK 2 TT has a random error and generates some test
implementations wrongly.
Example: Because of an error in the way the editor constructs the
model (parsing error, wrong precedence), negative numbers in the
model lose their minus sign; they become positive in the generated
code (or the intermediate representation).

Since the tests in MT test the system model MS correctly,
and since TS is correct, the tests in IS will fail and detect the
error in TT. Again, we measure coverage on model level to
ensure we have enough tests.

RISK 3 TT has a systematic error that results in the
implementation of all (or some class of) tests to be wrong.
Example: In template-based generators it is common to first write a
syntactically correct, but semantically wrong/trivial version of the
to-be-generated code. For example, the developer might initially
implement the generator for some model-level assertion as assert
true and then forget to change the true to reflect the actual con-
dition. All tests will succeed. An example that leads to a particular
class of tests to fail is that part of the generator that computes the
structure of the code for a particular kind of expression throws an
exception. Because the exception is ignored (a bad but common
practice), asserts that use this expression default to true.

These problems can be detected by manually reviewing
some test cases in the generated code or by fuzzing some
of the test cases in MT; they would then have to fail, but
won’t, because of the faults in the generators.

The implementation of some test cases should be RE-
VIEWed. Alternatively, FUZZING (see Figure 5) should
be used to prevent systematic errors in test cases.

Example Resolved: The assert true test implementations will
succeed, even though fuzzing introduced errors into the code; this
reveals the problem. The same is true for the other example.

For some cases, including the assert true given above,
static analysis of the generator itself can also help. For ex-
ample, assert true could be detected as a constant condi-
tion without side effect, which is always wrong/unnecessary.
Whether this is feasible depends on whether static analysis
for the generation language are available.

RISK 2+3 Both TS and TT have random errors that are
not realted to each other.
Example: A mix of the above examples.

If the errors are truly unrelated, then the first two cases apply
at the same time and thus some tests will fail; inspection will
reveal the unrelated errors in TS and TT so they can be fixed.

RISK 4 TS and TT have unrelated errors, that coinciden-
tally compensat each other.
Example: TS translates actions in hierarchical state machines
wrongly in terms of their execution order (entry-transition-exit in-
stead of exit-transition-entry). The generator for MT translates lists
of assertions in reverse order. Thus the assertions assert the wrong
order which the TS generator happens to create.

Unrelated errors, by definition, do not result from a (inter-
nally consistent) misunderstanding of the requirements and
a downstream consistent, but ultimately wrong transforma-
tion. Truly unrelated but compensating errors are thus ex-
ceedingly unlikely (cf. the contrived example).

Implement a second, REDUNDANT EXECUTION engine
for both MS and MT, for example, through an interpreter.
All tests must succeed in both cases. It is extremely un-
likely for those two to have the same pair of unrelated
but compensating errors.

Example Resolved: The redundant execution engine will not have
the list-related error, so the tests will fail there revealing the prob-
lem in the transformation for the other execution engine.

RISK 5 The two transformations TS and TT have related
(technical or functional) errors.
Example: Both TS and TT transform a model-level number type
to a C-level int8s instead of the required int16s, leading to
overflow. The tests won’t detect it (because both the actual and
expected value in the assertion wrap around due to overflow), but
the behavior is still semantically wrong.

The relatedness of the two errors in TT and TS usually results
from the fact that requirements have been misunderstood
(functional errors) or that the mapping to the target language
is wrongly designed (technical errors). For the errors to
be related and not randomly compensating, they are most
likely the result of the same person or group making wrong
decisions (note that errors in the transformation engine itself
are discussed in the next Risk paragraph).

REDUNDANT EXECUTION reveals the technical errors
because different execution platforms will not require the
same decisions regarding the mapping to the execution
platform. Functional errors should be revealed through
the validation process. To reduce the likelihood of related
errors in the first place, TS and TT should be implemented
by DIFFERENT DEVELOPERS.

Example Resolved: The redundant execution in the interpreter
uses Java’s BigDecimal which does not overflow and/or wrap-
around; the execution of the tests in the interpreter will thus diverge
from the execution in the generated code.

RISK 6 The transformation engine itself has an error.
Example: Polymorphic dispatch in transformation rules is faulty,
applying the wrong transformation rules in some cases.

While this is unlikely for tools that have been used for years,
mitigation of this risk might be required nonetheless:

If you do not trust the transformation engine, make sure
that the REDUNDANT EXECUTION does not use that
same transformation engine. Diverging tests will reveal
the problems.

Example Resolved: The redundant execution in an interpreter does
not rely on the transformation engine and its faulty dispatch; diverg-
ing test failures will reveal the problem.

5.3 Low-Level Code Assurance
We discuss additional steps that are similar to what would
be done in manually written code. However, we point out
specific advantages resulting from the use of DSLs.

RISK 7 Low-level failures because of the specifics of the
implementation code or language.
Example: Stack overflows, numeric precision errors, timing viola-
tions, or invalid pointer derefencings.

To prevent low-level failures as a consequence of specifics
of the execution platform, make sure that all (relevant) code
paths of the implementation are executed.

Measure COVERAGE on IS, on the target platform, and
ensure near-100% coverage for the tests.

If REDUNDANT EXECUTION on engines E1 and E2 is used,
and coverage is easier to measure on E1 (for example, in the
interpreter) you can also “transfer” the coverage to E2: if
the coverage of tests on E1 is sufficient (i.e., close to 100%),
then running the same set of tests on E2 implies a similar
coverage of the relevant code parts there, because the tests
exercise the complete, relevant implementation, whatever its
specific structure may be.6

For some languages, static analysis tools that prove the
absence of some classes of errors are available (such as
Astrée [13] or Polyspace for C [50]). At least for typical
errors, their use is straightforward and is recommended.
The code can be generated to use patterns that simplify
the analysis, and semantic annotations can be added that
enable more meaningful analysis (for example, for analyses
based on Frama-C Jessie [14]). The semantic information is

6 Note that there might be additional code/behaviors in E2 that could be
exploited maliciously. We discuss this below.

available in MS and can be mapped by TS. An example that
verifies concurrent C programs is given in [15].

Use STATIC ANALYSIS tools to further increase the qual-
ity and reliability of the generated code; generate an-
alyzable patterns via TS and add semantic annotations
required by the code-level analyzer based on MS.

RISK 7 The implementation may be exploited mali-
ciously as part of an attack on the system.
Example: Adversaries intentionally supply too much data, making
a buffer run over its limits.

Because of the degrees of freedom in the implementation,
the system may be attacked by exploiting those degrees of
freedom. Those attacks can usually not be predicted from
the model level, because the model (intentionally) abstracts
from those degrees of freedom. Penetration testing [2] on
implementation level can help prevent those.

Perform PENETRATION TESTING on IS to ensure the
absence of attack vectors.

The generator can generate potentially more secure code [68],
for example by calling sanitizing functions for all inputs [53].
Automating this through a generator avoids relying on de-
velopers’ consistency when doing it manually.

RISK 8 Insufficient resources may lead to errors.
Example: A data queue associated with a sensor overflows because
of an unexpectedly high signal rate on the sensor; data is lost, the
system behaves wrongly.

In contrast to a testing or simulation environment, the target
environment may be restricted in terms of memory, process-
ing power or other critical resources, and the program may
fail because it runs out of resources.

Run the tests cases IT on the real target hardware, with
real (amounts of) data. Make those limits explicit in the
documentation.

Capturing the expected resource utilization explicitly in MS
and then monitoring it during execution helps with diagnos-
tics because meaningful error messages can be issued – re-
source starvation is hard to debug otherwise.

RISK 9 The target compiler or runtime system may
have errors.
Example: The interpreter handles operator precedence wrongly.

When using interpretation to execute the models, handling
this risk is mandatory, and conceptually related to the previ-
ously discussed case of faulty transformations. If a genera-
tive approach with a downstream proven-in-use compiler is
used, it is very unlikely that the compiler has errors and one
can probably avoid this step.

Figure 5. Annotated baseline architecture from Figure 3.
Black boxes represent code verification activities that are
necessary because LWBs and code generation are used; grey
boxes are verification activities that would be done in the
same way if the code was written manually; and white boxes
are activities to validate the quality of the model. The circled
Ts represent traces to requirements.

Execute the system in REDUNDANT EXECUTION engines
to find problems in either of them; for the generative
approach, this may involve the use of different compilers.

Essentially, one can treat the transformation/compilation/run-
time stack as a black box and use redundancy and test diver-
gence to find errors in either of them.

5.4 Additional Safety Mechanisms
In addition to the risks identified in this paper, other things
can go wrong in critical systems; many of those mentioned
mentioned by Koopman in [34] are relevant. In this section
we discuss a few of them that are especially relevant.
Well-defined Language Users of the DSLs have to under-
stand its semantics to be able to create correct MS and MT
models, and to validate those. The same is true for the devel-
opers of TS and TT so they can “implement” these semantics
in IS and IT. To this end, a clear definition of the language
and its semantics is needed. For the end user, the tests in MT
or the ability to simulate the execution of the models can
help with understanding the semantics.
QA’ing the Language This paper presupposes that we can-
not assure the correctness of the DSLs and the transforma-
tions themselves (although there is work on this [1, 45, 63]),
which is why we propose an architecture that remedies re-
sulting risks. Nonetheless, the DSLs should be systemati-
cally tested and verified to the degree this is practical. Work
on language testing includes execution semantics [81], static
semantics [18], grammars and concrete syntax [39] as well
as multi-aspect testing frameworks [31, 55]. Ratiu and Voel-
ter specifically discusses language testing in MPS [55], using
manually written type system tests, automatically generated
test cases for language structure and syntax, and measuring
transformation coverage.

Quality of Generated Code Some domains require code
to conform to particular guidelines. For example, C code
in automotive systems is expected to conform to MISRA-
C [48] to improve readability and to prevent the use of lan-
guage constructs that are hard to understand (and analyze),
lead to unspecified behaviour or trigger known errors in the
compiler (see Section 5.3, Target compiler may be buggy).
Compliance can be checked by tools, for example the one by
LDRA.7 Generating code that conforms to such guidelines is
easy if the transformation developer is aware of them. The
strictness of the guidelines may be reduced for generated
code. For example, customers have granted us MISRA ex-
ceptions for generated polymorphic dispatch code that uses
(otherwise prohibited) void pointers.
Architectural Mechanisms In this paper, we discuss how
measures in the development process and tools can assure
CSC correctness. An orthogonal approach is runtime moni-
toring and fault detection [22], which transitions the system
into a safe state if a fault is detected. In medical systems,
a safe state may be to pop up a message that tells the user
to disregard the software and call her doctor. Examples of
architectural mechanisms for runtime monitoring are check-
sums (to detect random bitflips), redundant sensors (to de-
tect faulty sensors), monitoring of timing or resource con-
sumption (to detect emerging resource contention), or sepa-
rately specified validation rules for data or behavior (similar
to tests, specified separately by a separate developer, to avoid
common cause errors). The implementation of some of these
mechanisms can be automated through the transformations,
leading to a reusable safety-aware platform for specific do-
mains (an example for avionics is presented in [20]).

5.5 Summary of the Approach
Figure 5 summarizes the overall approach: we express both
the system and the tests or verification properties on model
level and then translate both of them to the implementation
and run them there. This way we express and validate the
semantics on the convenient level of the model, but then ex-
ecute and verify the semantics on the implementation level.
To address the remaining risks, we

• use redundant execution on two execution engines,
• use different developers for the two transformations,
• review a subset of the generated code,
• clearly define and QA the DSL,
• to use fuzzing on the tests,
• ensure high coverage for the tests,
• run the tests on the final device,
• perform static analysis on the generated code,
• perform penetration testing on the final system,
• and use architectural safety mechanisms.

7 http://www.ldra.com/en/software-quality-test-tools/
group/by-coding-standard/misra-c-c

Only the first four, those printed in italics, are specific to our
use of DSLs and LWBs; the others would be performed in
any case. We now evaluate this approach with a case study
in the healthcare domain, emphasising how the use of DSLs
impacts these activities and their economic feasibility.

6. Case Study in the Healthcare Domain
In this section we validate our approach with a case study
from the healthcare domain. In particular, we discuss the
DSL-based development of software medical devices at Vol-
untis as part of the PLUTO project. The development pro-
cess has to conform to the requirements of the Food and
Drug Agency (FDA) for the device to be used in practice.

6.1 FDA Requirements on Medical Software
Selling software in a medical context in the US requires au-
thorization from the FDA.8 The FDA defines the notion of a
Software as a Medical Device (SaMD), which is a software-
only solution for diagnosing or treating diseases.9 In the
relevant FDA documents10 an SaMD is classified by Level
of Concern (LOC): Minor, Moderate, and Major. Both the
SaMD and any off-the-shelf software that is used in the
SaMD require a hazard analysis, basic documentation, haz-
ard mitigation, and a description and justification of residual
risk. If after hazard mitigation the LOC is still High, they
require so-called special documentation.

Basic documentation encompasses a description of what
the software is, the hardware it requires, how the end user is
guided (to help avoid risks that result from wrong usage), as
well as a discussion of QA and maintenance processes. The
hazard analysis encompasses a list of all potential hazards,
their estimated severity and possible causes. The hazard mit-
igations then describe how the design of the system mit-
igates11 these hazards, including protective measures, user
warnings, user manuals or special labelling materials. The
required justification of residual risk then usually does not
contain any remaining ignificant risks.12

Software with a high level of concern also requires spe-
cial documentation, i.e., assurances that the development
process is appropriate and sufficient for the intended use.
For DSL-based development, this includes systematic man-

8 Other jurisdictions have other regulating bodies. But the FDA is generally
considered to be the most stringent one, so it is commonly used as the
benchmark.
9 http://www.imdrf.org/docs/imdrf/final/technical/
imdrf-tech-131209-samd-key-definitions-140901.pdf
10 https://www.fda.gov/downloads/medicaldevices/
deviceregulationandguidance/guidancedocuments/ucm073779.pdf
https://www.fda.gov/downloads/medicaldevices/
deviceregulationandguidance/guidancedocuments/ucm524904.pdf
11 The notion is to mitigate them to As Low As Reasonably Possible
(ALARP).
12 In some cases, some High risks could remain, but then it is up to the man-
ufacturer to document that the risk/benefit ratio is better than the already
existing solutions. This would still be accepted by the FDA since there is
still a benefit.

agement of the requirements for the DSLs, tracing of re-
quirements to the language definition, as well as the well-
definedness of the language and sufficient testing (see De-
fined Language and Language QA in Section 5.4).

The FDA has found that the majority of software-related
device failures are due to design errors:13 the most common
problem was failure to validate software prior to routine use.
DSLs can help with this; see Section 3. As discussed in Sec-
tion 5, LWBs and DSLs introduce additional hazards, and we
also show in Section 5 how these are mitigated in principle.
Voluntis are confident that the benefits of introducing DSLs
and LWBs will outweigh their risks and thus produce a bene-
ficial risk-benefit ratio, accelerating the production scale-up
and reducing the cost of QA of medical device software. The
goal of this case study is to prove this point.

Since the documentation requirements are essentially
similar to other high risk software components, we do not
discuss the details in this case study. In the remainder of this
chapter we illustrate how we have implemented the techni-
cal means of ensuring the quality of the CSC in the context
of the Voluntis PLUTO project.

6.2 Business Context
Because of the safety implications discussed in this pa-
per, the development of SaMDs is expensive and time-
consuming. The well-known fact that fixing errors becomes
more expensive the later they are found during develop-
ment [51, 52] is exacerbated in the healthcare domain be-
cause much of the test, documentation and review processes
required by the standards has to be repeated.

Voluntis’ SaMDs are used to help healthcare profes-
sionals (HCPs) manage and treat diseases, to calculate the
dosage of medication, and manage side-effects of oncology
therapies by providing alerts to HCP and medical recom-
mendations to patients. They are realized as web pages and
mobile apps, both for Android and iOS. The underlying al-
gorithms are inherently complicated, and their safety and
effectiveness must be ensured. For the reasons given above,
it is crucial for Voluntis’s business success to establish an
SaMD algorithm development process that reveals errors in
medical algorithms early, and not only when they are de-
ployed on the mobile device for prototype use, or even when
they are in the hands of users.

Voluntis has decided on a DSL-based approach that uses
models for defining and validating the algorithms in order to
benefit from the early validation and simplified review with
HCPs discussed in Section 3. The abstraction of the core
behaviors also helps avoid duplicate implementation effort
for Android and iOS. On the flip side, this requires verifying
the correctness of the CSC derived from the models.
13 https://www.fda.gov/downloads/AboutFDA/CentersOffices/
OfficeofMedicalProductsandTobacco/CDRH/CDRHTransparency/
UCM388442.pdf

Figure 6. Overview of the overall tool and system architec-
ture; see the running text in Section 6.3 for details.

6.3 Overview of the System and Tools
Figure 6 shows an overview over the system. A model-
ing environment is used by mixed teams of medical/tech-
nical professionals to design the algorithms underlying the
SaMD. They rely on a set of DSLs built specifically for
PLUTO which provide abstractions and notations meaning-
ful to HCPs (Figure 7). These include decision tables, deci-
sion trees and numbers with ranges, but also state machines
to capture the asynchronous, event-based, time-sensitive ex-
ecution of the algorithms. Additional languages support is
available for defining tests and simulation scenarios as well
as for specifying various configuration options for visualiza-
tions and simulations. The DSLs are described in some more
detail in Appendix A.

At the core is a simple functional expression language
called KernelF. KernelF14 has not been developed specifi-
cally for PLUTO; it is an embeddable functional language
developed by itemis that has been used in several DSLs
in various domains. Of KernelF’s 260 concepts, only 83
are availabe in PLUTO; the removed15 concepts have either
been deemed unnecessary in the domain (for example, op-
tion types) or have been replaced with alternatives that more
closely resemble the medical domain (decision trees and ta-
bles). Appendix A provides a few more details about the
PLUTO languages and also contains example code.

The sizes of the PLUTO languages are shown in Table 1.
To put the size and the associated challenge of ensuring cor-
rectness into perspective, we compare to mbeddr [69], a set
of C extensions for embedded software development imple-
mented with the same LWB technology as PLUTO. mbeddr
has ca. 1,600 language constructs [73], and its correctness
has been ensured, mainly through testing, to the point where
it was successfully used for commercial software develop-
ment [72]. The PLUTO languages are roughly one sixth in
size, which makes ensuring correctness considerable easier
than in mbeddr. In addition, about one third of the PLUTO

14 http://voelter.de/data/pub/kernelf-reference.pdf
15 In addition to extension, the ability to remove language concepts that are
not needed as part of a specific DSL is an important ingredient to making
an embeddable language truly reusable.

languages is reused from KernelF, further reducing effort
and providing a solid foundation in terms of correctness.

The DSLs are built with MPS, and the modeling environ-
ment is a stripped-down version of MPS as well. The en-
vironment comes with an interpreter that is able to run the
algorithms for simulation and testing directly in the mod-
eling environment. The functional core reuses the existing
interpreter for KernelF.

Because of deployment constraints (in particular, the time
it takes Apple to review apps on the app store), the execution
of the algorithms on mobile phones does not rely on gener-
ated binary code. Instead, the runtime environment embed-
ded in the mobile applications contains a (second, different)
interpreter written in C++ which, after separate compilation,
runs both on Android and iOS. The interpreter consumes the
algorithms in the form of XML files created by a generator
in the IDE and shipped over the network to the user’ devices.
Platform-specific libraries and frameworks (whose verifica-
tion and validation is outside the scope of this paper) are
used for integration with the two platforms, for example, for
accessing sensors and system values, storing data and UI.

At the core of the challenge thus was ensuring the cor-
rectness of the XML generator as well as the interpreter in
the runtime; we focus on those below. In addition, the correct
transfer of the XML to the devices had to be cryptographi-
cally ensured, and the algorithm had to be versioned to en-
sure reproducibility of an algorithm’s execution for a given
patient. We do not cover these aspects in this paper.

6.4 Current State
Version one of the system is implemented and tested. Vol-
untis is planning to release their next-generation products on
PLUTO in late 2018. It is a major business concern for Vol-
untis to obtain the FDA clearances for their software med-
ical devices promptly. Therefore, a team of regulatory ex-
perts meticulously challenges and prepares the technical files
to ensure they are fit for FDA clearance before submitting
them. As of April 2018 the clearance for a new SaMD based
on PLUTO has passed the pre-submission phase without any
concerns from the FDA regarding the proposed approach.

Going into detail about the intricacies of the clearance
would be a different paper; we just provide a very brief out-
line. FDA clears the complete SaMD, end-to-end. We treat

Language Part # of concepts percentage of total

Expressions (KernelF) 83 31%
Expressions (Extended) 63 23%

State Machines 29 11%
Testing, Scenarios 41 15%

Configuration 54 20%

Total 270 100%

Table 1. Size breakdown of the PLUTO languages. One
third of the overall language was reused from KernelF.

Figure 7. Overview of the various parts of the languages
used to implement SaMDs. Arrows represent dependencies;
shading indicates that only ca. 1/3 of KernelF was used in
this language.

the SaMD developed using the DSL like any other, manually
created SaMD. This means that we have to demonstrate and
document that that our SaMD has been conceived, verified
and validated as extensively as possible. As we describe be-
low, we have achieved test coverage of 100% with regards
to the medical algorithms, so we expect no problems here.
The reusable runtime environment, including the interpreter,
will be treated as off-the-shelf software (OTSS). OTSS has
its own requirements regarding safety. In the end it also boils
down to demonstrating test coverage. This includes the man-
ual tests for the framework parts, but also the interpreter tests
(which is why 100% coverage for the interpreter are useful).

Later in 2018 the DSLs will evolve further to support ad-
ditional language constructs necessary for additional cate-
gories of algorithms. While the algorithms so far have em-
phasized timing and process, future algorithms will be more
sophisticated in terms of querying and filtering of data and
computation of derived values. We are also evaluating the
integration of analysis tools into the IDE. For example, an
SMT solver16 can be used to statically check the complete-
ness and overlap-freedom of hierarchical boolean expres-
sions (those found in decision trees and tables). The solver
integration is already available for KernelF [74] and can be
extended to the Voluntis DSLs straightforwardly. In addition,
a model checker could be used to verify the absence of dead-
end or unreachable states in the state machine.

6.5 Development Tool Architecture
The architecture in Figure 5 is designed to address the risks
described in Section 5.2 and Section 5.3. In this section we
describe how this architecture was implemented for PLUTO.
Validation As suggested in Section 3, validation of the al-
gorithm is simplified by using the DSL. The decision trees
and decision tables are suitable for review directly by HCPs.

16 https://en.wikipedia.org/wiki/Satisfiability_modulo_theories

The state machine requires a degree of fluency in computa-
tional thinking [79] that not all HCPs have, which is why a
linearized visualization of the algorithm is generated for re-
view. At the core of the validation is the ability to execute
the algorithms in the IDE based on the in-IDE interpreter. A
simulator makes use of this interpreter to let HCPs simulate
the behavior of the models, resembling the interaction with
the algorithm on the patient’s phone. Particular executions
of the simulator can be recorded into test cases for automatic
re-execution and detection of regression errors.

One particular example for the usefulness of the inter-
preter is the following. Bluejay is a blood pressure algo-
rithm. We ran simulations with HCPs from key stakehold-
ers (among them oncologists from a renowned US partner
oncology hospital, and a pharma partner). In one case, the
scenario covered a patient who had her blood pressure go up
quickly over 3 days and had to go to the emergency room.
We reran the simulation with the same values entered by the
patient over the 3 days, moving forward in time with the
simulator. This confirmed that the algorithm behaved as ex-
pected and that the patient did not follow the instructions
(which led to the emergency room). The simulation took less
than five minutes in a conferene call with the doctors.
Redundant Execution The full algorithm behavior and
the tests are executed redundantly with the in-IDE inter-
preter and with the C++-based interpreter in the runtime en-
vironment. For the functional core, the existing interpreter
for KernelF was reused in the IDE, and a similar inter-
preter was implemented in C++ for the runtime environment.
Since KernelF is purely functional, these interpreters are rel-
atively simple; they can be seen as recursive calls of an eval
method on the AST nodes. Note that the idea of integrat-
ing the C++ interpreter into the IDE (in order to have only
one interpreter) was explicitly discarded, because the redun-
dancy in the implementation of the language is advantageous
in the context of safety-critical applications. The higher ef-
fort for developing two interpreters was accepted. The se-
mantics of the two interpreters were aligned through test
cases (we discuss coverage below). Because the Java-based
interpreter is much simpler17 than the one implemented in
C++, the Java interpreter was considered the “specification”,
and in the case of semantic differences, the bug was primar-
ily suspected in the C++ version (an assumption that was
correct in most but not all cases). Decision trees and de-
cision tables fit that same functional execution paradigm,
and the KernelF interpreter was modularly extended. For
the state machine, whose execution model goes beyond pure
functional evaluation, two new interpreters were written to
deal with state, time and asynchronicity. Here it was a little

17 Many reasons contribute to this: it does not have to care about non-
functional concerns, so no optimizations are involved; MPS offers convie-
nient APIs to traverse trees; Java in general requires attention to fewer de-
tails than C++, for example as a consequence of garbage collection; and a
part of the interpreter could be reused from KernelF.

bit more challenging to align the semantics of the two, but
through a sufficient number of representative test cases this
was achieved as well.

Note that the single C++ interpreter is compiled to iOS,
Android and x86/Linux. This allows us to run all scenar-
ios on three different platforms, automatically, on the build
server, which further increases redundancy and reliability.
Testing and Coverage A good test suite serves two pur-
poses. From the perspective of the end user, who assumes
that the execution engine is correct, tests verify the behavior
of a program. From the perspective of the language devel-
oper, who assumes that the programs and the tests are cor-
rect, they serve to verify the execution infrastructure. While,
in the future, the testing aspects of the DSLs will be used for
the former, during the development of the development tools
they were used for the latter. For this to be meaningful, a
very high coverage relative to the execution engine must be
achieved. We measured the following aspects of coverage18:

• We started with measuring the use of language concepts
and relationships. We achieved 100% coverage here. The
coverage analyzer also analyzed the complexity of the
part of the model where the concept was used to ensure
that the language concepts were not just used in isolation.

• Next, we analyzed the coverage of the in-IDE interpreter:
all evaluators for all language concepts had to be visited
at least once, and for interpreters that covered different
cases (for example, interpreting an empty list vs. a non-
empty list), all cases had to be executed at least once.
100% coverage was achieved as well.

• Since we executed all test cases in both interpreters, a
given coverage for the in-IDE interpreter automatically
translated to a similar coverage of the C++ runtime inter-
preter. However, as an additional means of confirmation,
we also measured the coverage of the C++ implementa-
tion of the interpreter using gcov.19 Finally, we ran the
cppcheck20 analyzer on the C++ implementation to en-
sure the code quality of the interpreter implementation;
no warnings are reported.

The generator that creates the XML from the models in the
IDE is generic with regards to the language structure. We
tested it using unit tests. We did not measure coverage there
specifically, because every model that was transferred to the
runtime environment for test execution also implicitly tested
the XML generator: a failing test on the runtime might result
from a faulty XML generator. We did not encounter any
signficant flaws in the XML generator.

18 Of course, as is always the case with coverage measurements, high
coverage is not a guarantee for the absense of errors; for example, one
cannot exhaustively test the ranges of (number) values or cases where a
language structure allows for an unbounded set of programs.
19 https://en.wikipedia.org/wiki/Gcov
20 https://en.wikipedia.org/wiki/Cppcheck

Earlier we had argued that we cannot qualify the language
workbench, the language or the generators. Instead we per-
form end-to-end testing of the modeled artifacts, automated
to the degree possible, with high coverage. This is also the
level of proof we provide to FDA.21 However, as we describe
here, we also tested the language itself by aiming for 100%
coverage of the interpreter and concept instantiation. This is
for two reasons. (1) It helps build our own trust in the system.
We are aware of the risks the approach incurs, and we want
to do everything that is realistically possible to avoid faults.
(2) Testing the infrastructure itself indirectly helps with test-
ing artifacts: if users write tests for their algorithms and a
test fails, we want to make sure the problem is actually in
their test, and not in the underlying infrastructure.
Fuzzing To ensure that the tests were actually sensitive to
the algorithms (and did not just contain assert true state-
ments), we used a combination of code reviews and manual
fuzzing, i.e., we manually changed some of the algorithms
and ensured that the corresponding tests failed.

6.6 Evaluation of the Approach
Test Algorithms Validation and testing has focused on two
SaMDs codenamed BlueJay and GreenJay. For the former,
existing blood pressure and diarrhea algorithms currently
used in clinical studies22 have been ported to PLUTO. For
the latter, four additional side-effect management algorithms
have been implemented with PLUTO.
Size of the Test Suites and Coverage To validate Bluejay,
305 test scenarios have been implemented; 28 for diarrhea,
277 for blood pressure. The GreenJay test suite has 296 sce-
narios (diarrhea 75, fever 109, nausea/vomiting 60, pain 52).
Many lower level tests of functional logic used by the algo-
rithms (such as decision tables or helper functions) are avail-
able for all algorithms. In Bluejay, 123 test scenarios were
adopted from the test specification for the original (manually
developed) algorithm. With PLUTO, the algorithm coverage
measurement allowed us to improve coverage to 100% of the
algorithm. The GreenJay tests provide 100% coverage of the
algorithm and the associated functions.
Validation Efforts Compared to the earlier manual im-
plementation, the effort for writing the test cases for Bluejay
was reduced from 50 person days (PDs) to 15 PDs. This 70%
reduction was attributed to the fact that they could be written
on the level of the DSL as opposed to the implementation.
For GreenJay’s four algorithms it took 55 PDs; no compari-
son is available because the GreenJay algorithms were new.

Even in the original approach, a high test coverage of the
algorithms was attempted. For this, test vectors were sys-
tematically created based on equivalence classes [28]. The

21 In conversations with people from FDA we have learned that static
analysis will play an increasing role in their assessment of the quality of
a software system. However, currently, testing and documentation is still
paramount.
22 https://clinicaltrials.gov/ct2/show/NCT02345265

verification engineer defined all the possible inputs and cor-
responding outputs for each medically relevant path in the
algorithm in an Excel sheet, then manually reduced the data
set by removing redundant input values (those that lead to
the same output by going through the same logical path in
the algorithms), and then write a test for each remaining in-
put. In the new system a generator performs the generations
and simplifications automatically; the team estimates a fac-
tor of 20 in reduction of the effort.

The unavoidable change requests are also handled more
efficiently. The original process involved several manual
steps, synchronized manually over several tools: (1) write
requirements specs in Excel incl. flow charts (HCP); (2)
implement software (dev); (3) write test cases (tester); (4)
build app (dev) and test it (tester). With PLUTO, everything
is done in the IDE, jointly by HCPs and developers. Various
consistency checks are applied, and execution happens di-
rectly in the IDE. This shortenes the iteration time between
HCPs and developers significantly (and reduces cost).

A concrete example: several rounds of refinement of a
blood pressure algorithm were performed with the same
stakeholders mentioned above (oncologists from a US part-
ner hospital, and a pharma company). The refinement objec-
tive was to allow HCPs to define thresholds to trigger med-
ical recommendations to patients to call their medical team.
Using PLUTO, the team was able to define the requirements
in week one and then implement the change and run the sim-
ulation on real data with the partners in week two. Then they
requested some changes, which were implemented the next
day, and in week 3 the simulation was demonstrated and
the partners validated the change. With PLUTO, the process
could easily have happened in one week (it took three be-
cause of the limited availability of the hospital’s HCPs). This
is much faster compared to pre-PLUTO interactions.

For verification and validation the team also reports
“tremendous” speedups: if a change is necessary after veri-
fication/validation, large parts of the verification/validation
have to be repeated. In the old approach, for each (group
of) change(s), testers had to go through all existing tests
and adapt them, then reexecute all. What, for Bluejay, could
take up to 10 PDs with the old way, is now done in 10
minutes. Considering that sometimes up to 5 change/veri-
fy/validate rounds are necessary, the overall improvements
are indeed “tremendous”. The need to support both iOS and
Android adds to the gains in efficiency. During initial algo-
rithm development only one platform would be supported to
avoid duplicate effort. But for changes after clearance, both
platforms have to be re-implemented/tested. The ability to
validate the algorithm on model level and the automated ex-
ecution and testing on the two platforms contributes to the
reduction in effort from 10 days to 10 minutes.
Tool Development Effort The development effort for
PLUTO itself, i.e., the languages, the IDE, the interpreter
and simulator, the XML-based transfer to the client as well

as the C++-based interpreter in the runtime as well as the
platform-specific adapter code was about 1,000 PDs, includ-
ing testing and validation. This is a significant investment for
Voluntis. However, considering the downstream increases in
productivity outlined above, as well as the resulting reduc-
tion in time-to-market make this a valid business case. Vari-
ous meetings with the board have confirmed the approach.
Tracing There are two approaches for tracing models/code
to requirements. The one mentioned earlier attaches trace
links to model elements that point to the requirements that
influenced the particular element. Because of Voluntis’ use
of MPS, the technical approach described in [70] would
work, where the trace links are attached directly to model
elements in MPS; a prototype has been developed that links
directly to specifications, software items and units in Team
Foundation Server. For now, Voluntis decided to use the
approach they had relied on in the past, mostly to be able to
use existing reporting infrastructure. Here, requirements IDs
are added into commit messages and existing tools are used
to extract the trace reports necessary for FDA clearance.
Use of Additional Safety Mechanisms This section dis-
cusses how the mechanisms introduced in Section 5.4 were
used in the context of this project.

The language was well-defined; it was developed together
with domain experts, implemented in a principled way us-
ing the LWB, and also documented for the end users. A
formal semantics, which would guarantee soundness of the
language definition, was not provided; this would require
a completely different approach, skills and tooling. Likely
it would have resulted in a much more restricted language,
which in turn conflicted with the goal of making it accessible
to domain experts to facilitate validation.

As we have discussed before, to assure the quality of the
languages, we have systematically tested the interpreter to
100% coverage. In addition, we have used MPS’ test sup-
port [55] to test the static semantics (type system) of the lan-
guages. The language was also designed to constructively
avoid certain classes of faults. For example, numbers with
ranges (with some static checking) avoid overflows, and
high-level decision expressions such as tables or trees avoid
complex if cascades. The top level structure of the algo-
rithm’s behavior was expressed as state machine because
of its well-defined semantics, with the intent of integrating
model checking in subsequent versions of the language.

Quality of generated code is not relevant: apart from the
generic XML generator, no code generation was used. The
conceptual equivalent was the QA of the C++ runtime; we
have explained above how we verified this through testing.

We used architectural mechanisms to identify failures at
runtime. In particular, the runtime system performed peri-
odic consistency checks of critical external data such as the
system clock or the elapsed time since the last network con-
nection (for possible updates of the algorithm). The language
also supports the definition of global and state-local invari-

ants that are checked by the interpreter. A failure of an in-
variant would stop the interpreter and go into a safe mode
(tell the patient to call support).
Reviews Reviews of models and simulation results are an
inherent part of validation; see above. We tried to automate
the verification of the runtime system as far as possible with
the means discussed above. However, for the parts of the run-
time outside of the interpreter (such as the interaction with
operating system services) regular implementation code re-
views and manually-written unit tests were used.
Different Developers The two different execution engines,
the in-IDE Java interpreter and the C++-based interpreter,
were developed by different teams. While this was not done
explicitly to avoid the risks of implementing both consis-
tently wrongly, but just because of different developer skills
(Java vs. C++), the effect was the same: a misunderstanding
of the requirements would not automatically lead to consis-
tently wrong behavior of both runtimes.
Pen Testing Penetration testing has not been performed
specifically for the interpreter, because it is not exposed to
the world. However, the platform-specific runtime system, as
well as the final apps, will undergo security testing, includ-
ing penetration testing. We do not discuss this any further,
because it is not specific to the DSL-based approach.

6.7 Lessons Learned
Execution is Crucial The core benefit perceived by the
HCPs is the ability to simulate (“play with”) an algorithm.
Of course an executable model of the algorithm is a neces-
sary prerequisite, so this does not invalidate the approach.
But it changed our effort allocation: we put more efforts into
a realistic simulator that closely resembled the final app.
Underestimated need for Computational Thinking De-
cision trees and tables are maintained by HCPs. However,
as a consequence of the asynchronicity and the time de-
pendence that is part of the algorithm core, the HCPs had
a hard time working directly on that part of the algorithm,
even though the DSL features declarative constructs to work
with time and durations. As of now, these parts of algorithms
are implemented by technical people and reviewed by HCPs.
Further training of the HCPs is neccessary. More generally,
educating domain experts in the basics of programming and
computational thinking [79], is useful in a wide range of
domains, not just this particular one. Among other things,
we are working on an interactive tutorial23 that teaches pro-
gramming novices about values, expressions, dependencies,
functions and the like.

6.8 Threats to Validity
Internal Several of the authors were involved in developing
PLUTO, which might lead to bias regarding its success.

23 https://markusvoelter.github.io/ProgrammingBasics/

However, our judgement relies on feedback from users and
on concrete numbers; we believe the conclusion is valid.

A second caveat is that we base our conclusion on early
experiences with the approach. It is possible that future algo-
rithms require so much change to the DSLs and runtime that
the initial benefits are voided. However, this is very unlikely
because the effort for incrementally adding a few language
concepts is in the order of a few days, plus a few weeks
with verification and valiation. In addition, the Greenjay and
Bluejay algorithms have been chosen because they are repre-
sentative of at least the known set of future algorithms, based
on Voluntis’ considerable experience in the domain.

To the degree that changes to the languages will be re-
quired in the future, our 100% test coverage for the inter-
preter (and the additional type system tests) ensures that
changes that break existing semantics will be revealed. The
mechanics of language/model co-evolution are handled by
MPS, as discussed in Evolution of Models, page 35, of [73].

Another possible threat to internal validity is that we can
only have limited experience regarding the willingness of the
HCPs to work with PLUTO. The HCPs we have interacted
with so far were very positive, but those were of course
chosen because they were open to the idea. On the other
hand, even if HCPs would never write algorithms but only
reviewing the models and experiment with the simulators
(with the modeling done by developers), almost all of the
benefits discussed in Section 6.6 still apply.
External The applicability of the approach in other safety-
critical domains, beyond healthcare, is of course crucial for
external validity. We dedicate the Section 7 to this topic.

Another aspect to external validity is the applicability
of the results outside Voluntis, i.e., other companies in the
healthcare domain. As long as the domain expertise and the
management support is available, we cannot see why the
approach would not work in other, similar settings.

The final question for external validity is the degree to
which the approach depends on using MPS as the language
workbench. The core approach to establishing safety does
not depend on MPS; for example, it could be implemented
with Xtext and Xtend instead [4]. However, based on our
experience with Xtext, we expect the language development
effort to be higher. However, other factors might be more
important. For example, the ability to reuse an existing, re-
liable expression language such as KernelF requires support
for modular language composition. It is available in MPS,
but Xtext supports only a much more limited form; many
other language workbenches do not support it at all. Simi-
larly, MPS’ support for non-textual notations is crucial for a
language that faciltates efficient validation (for example, the
decision tables and decision trees). Xtext does not directly
support mixed notations, but they could be built with other
Eclipse-based UI technologies. The effort, however, would
certainly be significantly higher. Summing up, it is less ob-

vious how language workbenches other than MPS could be
used to realize this approach, though it is definitely possible.

7. Other Domains
We now provide brief discussions of using the approach for
three additional domains: space, automotive, and robotics.
Space/ESA The ESA-founded European Cooperation for
Space Standardization24 (ECSS) is an initiative for devel-
oping a coherent, single set of standards for all European
space activities, and in particular, flight software. The ECSS-
Q-ST-80C standard addresses software product assurance,
including qualification steps to be agreed between the cus-
tomer (often ESA) and the supplier. Since most European
space projects focus on unmanned satellites and probes, the
software is considered mission-critical rather than safety-
critical, allowing for considerable relaxation.

ECSS-Q-ST-80C has a notion of generated code, tra-
ditionally modeled using tools like Simulink (for control
loops), or UML tools (for class skeletons). The code is quali-
fied either by using a qualified code generator (Simulink and
its code generators are considered proven in use) or by treat-
ing the generated code as manually written code.

As far as we know, DSLs and LWBs have not been used
in flight software development. Since the qualification cri-
teria are tailored specifically for each mission, the approach
described in Section 5 should be sufficiently convincing for
a customer to accept. However, a comprehensive prototype
based on mbeddr C has been developed by OHB System
AG [80]. Initial feedback from ESA is positive, but no for-
mal acceptance has been attempted yet.
Automotive Major trends in automotive software (for ex-
ample, integration on fewer but more powerful computers,
advanced driver assistance, and autonomous driving) lead to
a larger amount of software at higher safety levels. The rele-
vant standard, ISO26262 Road vehicles – Functional Safety
classifies software according to risk (ASILs A, B, C and D)
and assigns appropriate safety measures.

Model-based development tools are well-established (for
example, AUTOSAR25 for generating component glue code
and Matlab/Simulink for generating component implemen-
tations). ISO26262 explicitly acknowledges model-based
development for simulation and code generation (Annex B:
The seamless utilisation of models facilitates a highly con-
sistent and efficient development). The safety of model-
based development tools is addressed by proven-in-use argu-
ments and by treating the code as if it was manually written.

ISO26262 also specifies that, for untrusted tools, there
must be "very high confidence" that errors are detected. Tool
vendors provide reference workflows (for example, [12])
that define process activities to satisfy this requirement.
Most activities defined by these workflows are covered by

24 http://www.ecss.nl/
25 http://autosar.org

the LWB approach as described in Section 5, for example,
module and integration tests on model level. Checking of
modeling guidelines is necessary for a general-purpose mod-
eling tool, but not needed with an LWB approach as DSLs
will enforce guidelines directly. Automatic test case genera-
tion on model level can be applied in LWBs to avoid tedious
manual creation of test cases. As DSLs usually cannot be
proven-in-use, some additional measures are needed com-
pared to the state-of-the-art reference approach described
in [12]. Examples include the aforementioned ensuring of
diversity by developing transformations TS and TT sepa-
rately, and by deploying on two different RTEs.

Summing up, we are confident that the approach pro-
posed in this paper will work in automotive software. Two
projects are currently being developed for customers of
itemis26 that will shed light on this assumption.
Robotics From the regulatory point of view, traditional
industrial manufacturing robots are still largely treated as
machines and their safety is evaluated through a safety risk
assessment based on ISO12100:2010 or IEC61508.

For development tools and programming languages,
IEC61508 highly recommends the use of certified tools and
translators, as well as relying on trusted and verified soft-
ware components. However, IEC61508 does not clearly de-
fine the criteria for a translator to be accepted as certified,
hence the means discussed in Section 5.2 to assure correct
transformations appear to be suitable.

IEC61508 also states that the chosen language should
be restricted to unambiguously defined features, match the
characteristics of the application, and contain features that
facilitate the detection of errors [21]. All of these properties
fit well with DSLs and LWBs (Section 3).

Avoidance of collisions between robots and humans is at
the core of robot safety, regulated by DIN/EN/ISO10218.
Therefore, classical industrial robotics come with safety
fences, which tightly constrain the possibility of harming
humans. However, modern robots might be required to in-
tentionally make contact with humans (teaching, collabora-
tion) in open, unstructured environments where testing can-
not be exhaustive and cannot be cost effective: safety must
be an assured also for unexpected situations. A promising
approach is the use of static analysis to reduce the test ef-
fort. For those to be adopted more widely across industry,
they must be flexible and easy to use. DSLs and LWBs are
a good foundation for formal methods, analysis, and even
proofs, based on domain-specific abstractions. The architec-
ture proposed in Section 5 seems suitable to enable easier
access to domain expert, and therefore reducing time and
cost of adoption, as discussed in Section 4.

26 We are not allowed to mention names at this point.

8. Related Work
Overviews A general comparison of safety standards for
different domains is presented in [40]. While it does not di-
rectly consider DSLs, LWBs or code generation, it provides
a good overview over the general challenges. Conmy and
Paige [11] focus on the challenges of using models and code
generation (with an MDA flavor) for safety-critical systems.
Among other things, they identify that “program compilers
or interpreters must be assured somehow” – which is the
challenge we address in the current paper.
DSLs in Safety-Critical Software Tolvanen et al. re-
port about the use of a graphical DSL (implemented in
MetaEdit+) in a medical system [61]. They observe some
of the same benefits in terms of validation and integration of
stakeholders. However, the language deals with lower-level
aspects of a controller in a medical device, and the stake-
holders are presumably technical (as opposed to our HCPs).
While they also generate code, they are silent about if or how
they assure the correctness of the generated code.

Florence et al. discusses POP-PL, a DSL for describing
complex medical prescriptions [19]. Similar to the PLUTO
case study, it expresses a prescription and monitoring pro-
cess as a reactive system. The paper contains an evaluation
of the DSL with real users based on a survey; they report that
prescribers and clinicians can understand programs in this
language. The paper also contains a formal execution model
based on the lambda calculus. However, the paper does not
address safety and certification. In other words, it confirms
the benefits of DSLs and models introduced in Section 3, but
does not address dealing with possible risks (Section 5).

DSLs have been used in other critical domains. For ex-
ample, Réveillère et al. discuss operating system driver de-
velopment [58]. Haxthausen and Peleske [24], as well as
Svendsen et al. [60] describe DSL for defining railway in-
terlocking protocols. All of these works exploit the benefits
of better analyzability on DSL level and identify the need
for verifying the interpreter/generator and the compiler, but
do not address this challenge. In contrast to our paper they
also do not describe an architecture that compensates for this
shortcoming, for example, through systematic testing.
Tools Proven in Use Not surprisingly, the largest stack of
related work in the context of generating safety-critical soft-
ware from models relies on tools that are proven in use. For
example, Pajic et al. [54] use UPAAL for modeling and ver-
ification of models, then translate the models to Simulink/S-
tateflow, and finally use its proven-in-use code generator to
generate the C implementation. Note that the transformation
from UPAAL to Simulink is not proven-in-use; it has been
“verified” through reviews. Beine and his coauthors rely on
dSpace’s TargetLink as well [3]. In general, proven tools will
force developers to use existing (proven) notations, which is
problematic regarding the benefits of models for validation,
because they are usually not very well aligned with a partic-
ular domain. Stacking a DSL on top of a proven lower-level

modeling tool is useful though, because at least a part of the
semantic gap is bridged by proven tools; the remaining gap is
smaller, and thus presumably easier to verify. Building DSLs
on top of KernelF is a small step in this direction.
Provably Correct Tools To the best of our knowledge,
the only qualified modeling tool that is proven correct, and
that is used in industrial practice is Scade [16]. However,
similarly to proven-in-use tools, the fact that (a particular
version of) the tool has been proven correct means that you
cannot extend it with domain-specific constructs, limiting
the usefulness of the approach for validation with domain
experts. The Lustre language used by Scade is essentially a
synchronous dataflow language. Consequently, Scade could
not sensibly be used for our use case.
Formally Verifying Models This is not a paper on soft-
ware verification, so we discuss it only briefly. There is a
huge community that works on verifying various properties
of programs or models. Some of them apply to general-
purpose languages and are thus suitable for verifying im-
plementations in scenarios similar to the one described in
this paper. The canonical example is model checking C with
CBMC [36]. The SMACCMPilot project27 uses the Ivory
language [26], a kind of C embedded in Haskell, for im-
plementing high-reliability embedded software. Wasilewski
et al. define the requirements of DSLs that use formalisms
from automata theory [76]. However, all of these languages
are unsuitable for use with our domain experts.

Other approaches work on models expressed with specific
modeling languages optimized for expressing systems and
properties in a way that makes the verification simpler (an
example is PROMELA/Spin [27]). These languages are typ-
ically also much too technical for use with non-programmer
domain experts. In addition, this category has the same prob-
lem of correctly translating to the implementation as the ap-
proach described in this paper.

Molotnikov et al. [49] present a partial solution to this
problem in the context of the pacemaker challenge [46].
They rely on C extensions to raise the abstraction level of
the code to be closer to the pacemaker domain, and then
specify (temporal) correctness properties on that level. The
actual verification is performed on the level of the C imple-
mentation using the aforementioned CBMC. So, similar to
the approach in this paper, validation and property specifica-
tion happens at the model level, but the actual verification is
performed on the level of the generated code (the ultimately
relevant artifact). The difference to the approach discussed
in this paper is is that Molotnikov relies on C and temporal
properties; these are not accessible to domain experts.
Formalisation of Language Definitions Whalen and
Heimdahl [78] define requirements for the use of code gen-
eration in safety-critical systems such as formal specifica-
tion of source and target languages as well as a formally

27 https://smaccmpilot.org/

verified code generator. They provide an example for the
former in the form of very simple state-based and impera-
tive languages. However, these are not expressive enough to
be used with domain experts. They do not have a provably
correct generator. Because of these two limitations this ap-
proach does not really satisfy the requirements they propose
and is of now help to us. More generally, several works ad-
dress the correctness of language definitions and language
implementations. The goal is to ensure soundness of the
language definition itself (not just of particular programs/-
models, as in the previous paragraph), so once a language
designer has finished designing the language, and the LWB
reports no more errors, it is guaranteed that all programs
written with that language are correct. The approaches rely
on using more analyzable formalisms for specifying the lan-
guage implementations themselves. Visser’s essay [64] ex-
presses the goals and possible approaches very well. There is
work that relies on model checking [45], automated theorem
proving [9], and more generally, compiler verification [41].
While these approaches are very useful, it is unrealistic to-
day, in the context of the vast majority of industry projects,
to formally verify the definitions of languages that have the
size and complexity of those we use with domain experts.
Safety Analysis DSLs DSLs are used for analysing safety
properties of systems: DSLs are used to model faults and
their propagations [75], to express fault tree analyses [57]
or to analyze architectural models for their safety proper-
ties [8]. While this approach also uses DSLs in the context
of safe system development, they are pure analysis tools; the
CSC is not automatically derived from them, so they are a
lower risk. By connecting fault tree analyses or failure mode
and effects analyses directly with system and test models
(MS/MT) expressed in the same LWB, benefits regarding
productivity and consistency can be achieved compared to
using separate, external tools. In fact, Safety.Lab, introduced
in [57] is implemented with MPS and could be used for this
purpose (as they state in their future work).

9. Discussion
9.1 Justification of Higher Efforts
The additional verification and validation steps summarized
in Section 5.5 and Figure 5 lead to additional effort com-
pared to the use of LWBs outside of critical systems. How-
ever, the critical systems community accepts that the veri-
fication effort is several times higher than in other systems
(up to 1,000 USD per LoC [23] compared to 15-50 USD
in regular embedded systems [33]). However, the higher ef-
fort has to be weighed against the traditional, manual pro-
cess, taking into account the benefits discussed in Section 3.
Anecdotally, the introduction of a LWB and DSLs can re-
duce the development effort by a factor of 10 or more; and
our case study certainly seems to confirm this. Since most
of the QA mechanisms introduced in Section 5 can be au-
tomated (and hence, are one-time costs), the fundamental

benefits of LWBs and DSLs are not compromised; however,
the threshold at which the approach becomes viable may be
higher than in non-critical software.

9.2 In-IDE Interpreters as a Central Building Block
Implementing an interpreter directly in the development tool
proves to be particularly appealing, because it solves many
problems at the same time (reducing overall effort), both in
the context of validation and correct implementation.

For validation, it is the basis for a simulator that allows
DSL users to interactively explore the models. It can also
be used to support the DSL users in testing the (functional)
behavior of their models without relying on generation, com-
pilation and deployment, shortening the turnaround time and
simplifying the required infrastructure on their computers.

For verification it can act as a redundant execution plat-
form, uncovering errors in the transformations (unrelated but
compensating, as well as related errors). Because it does not
rely on transformations, it can help reveal errors in the trans-
formation engine itself. Finally, because interpreters used
this way usually do not have to be particularly fast or effi-
cient in terms of resource consumption, their implementa-
tion is often much simpler than the implementation of gen-
erators, which usually do have to generate fast and efficient
code. This makes the interpreter implementation less error
prone, letting them serve almost as a specification of the se-
mantics; errors are more likely in the generators.

Because of these benefits for validation and correctness,
we have been using in-IDE interpreter with many DSLs.
Combined with a modular, reusable expression language like
KernelF that already comes with an interperter that is tested
extensively, makes the approach even more appealing.

An interpreter that is used in the way discussed here
of course does not represent the small-step semantics of a
lower level execution platform and cannot reproduce timing
properties or other non-functional concerns. Consequently,
a successful execution on the interpreter does not guarantee
correctness of those aspects.

9.3 Qualified Language Workbenches?
A qualified language workbench is one where the language
definition facilities and the generation engine can be relied
on to be correct.28 We could rely on its correctness without
project-specific mitigations. If we would test the model,
language and generators, there would be no need to test the
CSC (cf. case B in Figure 2).
Will we have one? We could obtain a qualified language
workbench by proving it correct, developing it with a safety-
process or by proving it in use.

Proving a practically usable language workbench correct
is a major undertaking. It is complex enough to prove prop-

28 Note that the languages and generators would still be DSL-specific;
otherwise we’d use a fixed language tool and thus move to case A of in
Figure 2.

erties about a particular language; for an LWB we would
either have to prove the correctness of meta languages, or, as
part of language development, assemble proofs that a partic-
ular language is correct. While progress is being made (for
example, integrating proof assistants into the Spoofax lan-
guage workbench) it is hard to imagine this to be practical
any time soon. Another data point that helps us judge the
odds of proving an LWBs correct is the availability of com-
pilers that are proven correct. While they do exist, for exam-
ple for C [41], ML [38] and Ada [59], the verification effort
was substantial; and LWB are much more effort, because of
their inherent meta programming capability.

Developing a LWB in a safety-process is feasible in prin-
ciple (even considering that one would have to use the su-
perset of the various domain-specific safety standards men-
tioned in Section 2.1). However, considering the additional
cost incurred such a process, the complexity of a language
workbench, the fact that it is still a niche technology and
the relatively small overlap between the safety and language
communities, we consider this scenario unlikely, too.29

Proving a language workbench (not the languages!) in
use is the most likely way to end up with a qualified LWB.
However, for this to happen, enough relevant projects would
have to use one particular version of a particular LWB.
Again, considering the small overlap between the safety and
language communities, and the fact that the LWBs evolve
quickly, this is also unlikely.
What would change? The architecture introduced in this
paper treats the the whole stack as a black box. Only one
of the risks in Section 5 (“The transformation engine itself
has an error.”) results from a problem in the LWB. If we
were guaranteed that a part of this stack has no errors, how
would we test the remaining part of the stack? How would
we test the language and its generator? Probably we would
still write test cases on model level and run them on the level
of the implementation, so not very much would change.

10. Conclusions and Future Work
We proposed an architecture for using LWBs and DSLs in
critical software development that mitigates the risks of po-
tentially faulty transformations from DSL-based models to
the code-level implementation. We validate the approach
with an industrial case study in the healthcare domain and
outline the degree to which this approach is feasible in
robotics, space, and automotive.

Our future work includes running projects in the space
and automotive domains to learn which modifications to
the approach are necessary to approval from certification
authorities. We will also collect concrete numbers on the
increased efficiency in critical software development using

29 The authors have anecdotally heard about an attempt to develop a code
generator in Ada as part of a mission-critical military project; however, a
simple template-expanding code generator is a long way from a full-blown
language workbench.

LWBs. One of our customers plans to develop a qualification
kit for an embedded software development tool based on
MPS; we expect a lot of input for the use of MPS in critical
software. Finally, Fortiss is working on integrating provably
correct transformations [45] into MPS.

We are confident that this architecture will help to make
LWBs and DSLs admissible for use in real-world projects,
thus allowing the critical software industry to reap the ben-
efits of these technologies that have been extensively docu-
mented for non-critical domains.

Acknowledgments
The authors would like to thank the team at Voluntis and
itemis who built the system that underlies the case study.
These include Wladimir Safonov, Jürgen Haug, Sergej Košče-
jev, Alexis Archambault, Nikhil Khandelwal. We would also
like to thank Richard Paige and Sebastian Zarnekow for their
feedback on drafts of the paper.

References
[1] M. Amrani, B. Combemale, L. Lucio, G. M. K. Selim, J. Dingel,

Y. L. Traon, H. Vangheluwe, and J. R. Cordy. Formal verification
techniques for model transformations: A tridimensional classifica-
tion. Journal of Object Technology, 14(3):1:1–43, 2015. . URL
http://dx.doi.org/10.5381/jot.2015.14.3.a1.

[2] B. Arkin, S. Stender, and G. McGraw. Software penetration testing.
IEEE Security & Privacy, 3(1):84–87, 2005.

[3] M. Beine, R. Otterbach, and M. Jungmann. Development of safety-
critical software using automatic code generation. Technical report,
SAE Technical Paper, 2004.

[4] L. Bettini. Implementing domain-specific languages with Xtext and
Xtend. Packt Publishing Ltd, 2016.

[5] B. W. Boehm et al. Software engineering economics, volume 197.
Prentice-hall Englewood Cliffs (NJ), 1981.

[6] M. Broy, S. Kirstan, H. Krcmar, B. Schätz, and J. Zimmermann. What
is the benefit of a model-based design of embedded software systems
in the car industry? Software Design and Development: Concepts,
Methodologies, Tools, and Applications: Concepts, Methodologies,
Tools, and Applications, page 310, 2013.

[7] T. Bruckhaus, N. Madhavii, I. Janssen, and J. Henshaw. The impact of
tools on software productivity. IEEE Software, 13(5):29–38, 1996.

[8] C. Buckl, M. Regensburger, A. Knoll, and G. Schrott. Models for
automatic generation of safety-critical real-time systems. In ARES
2007 Conference. IEEE.

[9] A. Chlipala. A verified compiler for an impure functional language.
In ACM Sigplan Notices, volume 45, pages 93–106. ACM, 2010.

[10] K. Claessen and J. Hughes. Quickcheck: a lightweight tool for random
testing of haskell programs. Acm sigplan notices, 46(4):53–64, 2011.

[11] P. Conmy and R. F. Paige. Challenges when using model driven ar-
chitecture in the development of safety critical software. In 4th Intl.
Workshop on Model-Based Methodologies for Pervasive and Embed-
ded Software, 2007. IEEE.

[12] M. Conrad. Verification and validation according to iso 26262: A
workflow to facilitate the development of high-integrity software.
ERTS2 Conference 2012.

[13] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. The astrée analyzer. In Esop, volume 5, pages 21–30.
Springer, 2005.

[14] P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and
B. Yakobowski. Frama-c. In International Conference on Software
Engineering and Formal Methods. Springer, 2012.

[15] M. Dahlweid, M. Moskal, T. Santen, S. Tobies, and W. Schulte. Vcc:
Contract-based modular verification of concurrent c. In ICSE Com-
panion, 2009.

[16] F.-X. Dormoy. Scade 6: a model based solution for safety critical
software development. In Proceedings of the 4th European Congress
on Embedded Real Time Software (ERTS’08), pages 1–9, 2008.

[17] S. Erdweg, T. Van Der Storm, M. Völter, M. Boersma, R. Bosman,
W. R. Cook, A. Gerritsen, A. Hulshout, S. Kelly, A. Loh, et al. The
state of the art in language workbenches. In International Conference
on Software Language Engineering, pages 197–217. Springer, 2013.

[18] M. Eysholdt. Executable specifications for xtext. Website, 2014.
http://www.xpect-tests.org/.

[19] S. P. Florence, B. Fetscher, M. Flatt, W. H. Temps, T. Kiguradze, D. P.
West, C. Niznik, P. R. Yarnold, R. B. Findler, and S. M. Belknap. Pop-
pl: a patient-oriented prescription programming language. In ACM
SIGPLAN Notices, volume 51, pages 131–140. ACM, 2015.

[20] S. Görke, R. Riebeling, F. Kraus, and R. Reichel. Flexible platform ap-
proach for fly-by-wire systems. In 2013 IEEE/AIAA Digital Avionics
Systems Conference. IEEE.

[21] W. A. Halang and J. Zalewski. Programming languages for use in
safety-related applications. Annual Reviews in Control, 27(1), 2003. .

[22] R. Hanmer. Patterns for fault tolerant software. John Wiley, 2013.

[23] B. Hart. Sdr security threats in an open source world. In Software
Defined Radio Conference, pages 3–5, 2004.

[24] A. E. Haxthausen and J. Peleska. A domain specific language for rail-
way control systems. In Proc. of the 6thth biennial world conference
on integrated design and process technology, 2002.

[25] F. Hermans, M. Pinzger, and A. Van Deursen. Domain-specific lan-
guages in practice: A user study on the success factors. In Interna-
tional Conference on Model Driven Engineering Languages and Sys-
tems, pages 423–437. Springer, 2009.

[26] P. C. Hickey, L. Pike, T. Elliott, J. Bielman, and J. Launchbury. Build-
ing embedded systems with embedded dsls. In ACM SIGPLAN No-
tices, volume 49, pages 3–9. ACM, 2014.

[27] G. Holzmann. Spin model checker, the: primer and reference manual.
Addison-Wesley Professional, 2003.

[28] W.-l. Huang and J. Peleska. Exhaustive model-based equivalence class
testing. In IFIP International Conference on Testing Software and
Systems, pages 49–64. Springer, 2013.

[29] E. Jürgens and M. Feilkas. Domain specific languages. 2006.

[30] J. Kärnä, J.-P. Tolvanen, and S. Kelly. Evaluating the use of domain-
specific modeling in practice. In Proceedings of the 9th OOPSLA
workshop on Domain-Specific Modeling, 2009.

[31] L. C. Kats, R. Vermaas, and E. Visser. Integrated language definition
testing: enabling test-driven language development. In ACM SIGPLAN
Notices, volume 46, pages 139–154. ACM, 2011.

[32] R. B. Kieburtz, L. McKinney, J. M. Bell, J. Hook, A. Kotov, J. Lewis,
D. P. Oliva, T. Sheard, I. Smith, and L. Walton. A software engineering
experiment in software component generation. In Proceedings of the
18th international conference on Software engineering, pages 542–
552. IEEE Computer Society, 1996.

[33] P. Koopman. Embedded Software Costs 15−40 per line of code
(Update: 25−50). http://bit.ly/29QHOlo (URL too long).

[34] P. Koopman. Risk areas in embedded software industry projects. In
2010 Workshop on Embedded Systems Education. ACM, 2010.

[35] T. Kosar, M. Mernik, and J. C. Carver. Program comprehension of
domain-specific and general-purpose languages: comparison using a
family of experiments. Empirical software engineering, 17(3), 2012.

[36] D. Kroening and M. Tautschnig. Cbmc–c bounded model checker. In
International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems, pages 389–391. Springer, 2014.

[37] A. Kuhn, G. C. Murphy, and C. A. Thompson. An exploratory study of
forces and frictions affecting large-scale model-driven development.
In International Conference on Model Driven Engineering Languages
and Systems, pages 352–367. Springer, 2012.

[38] R. Kumar, M. O. Myreen, M. Norrish, and S. Owens. Cakeml: a
verified implementation of ml. In ACM SIGPLAN Notices, volume 49,
pages 179–191. ACM, 2014.

[39] R. Lämmel. Grammar testing. In Proceedings of the 4th International
Conference on Fundamental Approaches to Software Engineering,
2001.

[40] E. Ledinot, J.-M. Astruc, J.-P. Blanquart, P. Baufreton, J.-L.
Boulanger, H. Delseny, J. Gassino, G. Ladier, M. Leeman,
J. Machrouh, et al. A cross-domain comparison of software devel-
opment assurance standards. Proc. of ERTS 2012.

[41] X. Leroy. Formal verification of a realistic compiler. Communications
of the ACM, 52(7):107–115, 2009.

[42] J. Lewis. Cryptol: specification, implementation and verification of
high-grade cryptographic applications. In Proceedings of the 2007
ACM workshop on Formal methods in security engineering, pages 41–
41. ACM, 2007.

[43] G. Liebel, N. Marko, M. Tichy, A. Leitner, and J. Hansson. Assess-
ing the state-of-practice of model-based engineering in the embedded
systems domain. In International Conference on Model Driven Engi-
neering Languages and Systems, pages 166–182. Springer, 2014.

[44] P. Liggesmeyer and M. Trapp. Trends in embedded software engineer-
ing. IEEE software, 26(3), 2009.

[45] L. Lúcio, B. Barroca, and V. Amaral. A technique for automatic
validation of model transformations. In MODELS 2010. Springer.

[46] D. Méry, B. Schätz, and A. Wassyng. The pacemaker challenge:
Developing certifiable medical devices (dagstuhl seminar 14062). In
Dagstuhl Reports, volume 4. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2014.

[47] A. Michailidis, U. Spieth, T. Ringler, B. Hedenetz, and S. Kowalewski.
Test front loading in early stages of automotive software development
based on autosar. In DATE 2010. IEEE.

[48] MISRA. Guidelines for the use of C in critical systems, 2004.

[49] Z. Molotnikov, M. Völter, and D. Ratiu. Automated domain-specific
c verification with mbeddr. In Proceedings of the 29th ACM/IEEE
international conference on Automated software engineering, pages
539–550. ACM, 2014.

[50] P. Munier. Polyspace®. Industrial Use of Formal Methods: Formal
Verification, pages 123–153, 2012.

[51] G. J. Myers. Software Reliability. John Wiley & Sons, Inc., 1976.

[52] G. J. Myers. A controlled experiment in program testing and code
walkthroughs/inspections. Communications of the ACM, 21(9):760–
768, 1978.

[53] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and D. Evans.
Automatically hardening web applications using precise tainting. In
IFIP International Information Security Conference. Springer, 2005.

[54] M. Pajic, Z. Jiang, I. Lee, O. Sokolsky, and R. Mangharam. Safety-
critical medical device development using the upp2sf model trans-
lation tool. ACM Transactions on Embedded Computing Systems
(TECS), 13(4s):127, 2014.

[55] D. Ratiu and M. Voelter. Automated Testing of DSL Implementations.
In 11th IEEE/ACM International Workshop on Automation of Software
Test (AST 2016), 2016.

[56] D. Ratiu, B. Schaetz, M. Voelter, and B. Kolb. Language engineering
as an enabler for incrementally defined formal analyses. In Proceed-
ings of the First International Workshop on Formal Methods in Soft-

ware Engineering: Rigorous and Agile Approaches, pages 9–15. IEEE
Press, 2012.

[57] D. Ratiu, M. Zeller, and L. Killian. Safety.lab: Model-based domain
specific tooling for safety argumentation. In International Conference
on Computer Safety, Reliability, and Security, pages 72–82. Springer,
2014.

[58] L. Réveillère, F. Mérillon, C. Consel, R. Marlet, and G. Muller. A
dsl approach to improve productivity and safety in device drivers
development. In ASE 2000. IEEE.

[59] V. Santhanam. The anatomy of an faa-qualifiable ada subset compiler.
In ACM SIGAda Ada Letters, volume 23, pages 40–43. ACM, 2002.

[60] A. Svendsen, G. K. Olsen, J. Endresen, T. Moen, E. Carlson, K.-J.
Alme, and Ø. Haugen. The future of train signaling. In International
Conference on Model Driven Engineering Languages and Systems,
pages 128–142. Springer, 2008.

[61] J.-P. Tolvanen, V. Djukić, and A. Popovic. Metamodeling for medi-
cal devices: Code generation, model-debugging and run-time synchro-
nization. Procedia Computer Science, 63:539–544, 2015.

[62] A. Van Deursen, P. Klint, and J. Visser. Domain-specific languages:
An annotated bibliography. ACM Sigplan Notices, 35(6):26–36, 2000.

[63] V. Vergu, P. Neron, and E. Visser. Dynsem: A dsl for dynamic seman-
tics specification. Technical report, Delft University of Technology,
Software Engineering Research Group, 2015.

[64] E. Visser, G. Wachsmuth, A. Tolmach, P. Neron, V. Vergu, A. Pas-
salaqua, and G. Konat. A language designer’s workbench: A one-
stop-shop for implementation and verification of language designs. In
Proc. of the 2014 ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming & Software. ACM, 2014.

[65] M. Voelter. Language and ide modularization and composition with
mps. In Generative and transformational techniques in software
engineering IV, pages 383–430. Springer, 2013.

[66] M. Voelter. Generic tools, specific languages. TU Delft, Delft Univer-
sity of Technology, 2014.

[67] M. Voelter and S. Lisson. Supporting Diverse Notations in MPS’
Projectional Editor. GEMOC Workshop.

[68] M. Voelter, Z. Molotnikov, and B. Kolb. Towards improving software
security using language engineering and mbeddr c.

[69] M. Voelter, D. Ratiu, B. Kolb, and B. Schaetz. mbeddr: Instantiating
a language workbench in the embedded software domain. Automated
Software Engineering, 20(3):339–390, 2013.

[70] M. Voelter, D. Ratiu, and F. Tomassetti. Requirements as first-class cit-
izens: Integrating requirements closely with implementation artifacts.
In ACESMB@ MoDELS, 2013.

[71] M. Voelter, A. v. Deursen, B. Kolb, and S. Eberle. Using C lan-
guage extensions for developing embedded software: A case study,
volume 50. ACM, 2015.

[72] M. Voelter, A. van Deursen, B. Kolb, and S. Eberle. Using c language
extensions for developing embedded software: A case study. In OOP-
SLA 2015, 2015.

[73] M. Voelter, B. Kolb, T. Szabó, D. Ratiu, and A. van Deursen. Lessons
learned from developing mbeddr: a case study in language engineering
with mps. Software & Systems Modeling, pages 1–46, 2017.

[74] M. Voelter, T. Szabó, and B. Engelmann. An Overview of Program
Analysis using Formal Methods. Self-published, 2017.

[75] M. Wallace. Modular architectural representation and analysis of
fault propagation and transformation. Electronic Notes in Theoretical
Computer Science, 141(3):53–71, 2005.

[76] M. Wasilewski, W. Hasselbring, and D. Nowotka. Defining require-
ments on domain-specific languages in model-driven software engi-
neering of safety-critical systems. 2013.

[77] M. Weiser, J. D. Gannon, and P. R. McMullin. Comparison of struc-
tural test coverage metrics. IEEE Software, 2(2):80, 1985.

[78] M. W. Whalen and M. P. E. Heimdahl. An approach to automatic
code generation for safety-critical systems. In Automated Software
Engineering, 1999. 14th IEEE International Conference on., pages
315–318. IEEE, 1999.

[79] J. M. Wing. Computational thinking. Communications of the ACM,
49(3):33–35, 2006.

[80] A. Wortmann and M. Beet. Domain specific languages for efficient
satellite control software development. In DASIA 2016, volume 736,
2016.

[81] H. Wu, J. G. Gray, and M. Mernik. Unit testing for domain-specific
languages. In Domain-Specific Languages, IFIP TC 2 Working Con-
ference, DSL 2009, Oxford, UK, July 15-17, 2009, Proceedings, pages
125–147, 2009.

A. The PLUTO languages
The exact nature of the DSLs used in PLUTO are not rel-
evant to the contributions of this paper. However, for com-
pleteness, we provide an overview over the DSLs here. Note
that a discussion of the implementation of the PLUTO lan-
guages using MPS is beyond the scope of this paper. We
refer the reader to the MPS tutorials30 or [66].
Main Algorithm The main algorithm controls messages
sent to the user and its replies, as well as the timing of those
messages and prompts. It also makes high-level decision as
to the execution of the algorithm. It is essentially a hierar-
chical state machine. For complex decisions, it calls into the
decision support sublanguage.

Figure 8. A decision tree; the green/up edges represent yes,
the red/down edges represent no.

Figure 9. A decision table that specifically works on ranges
of values. Note the compact syntax for range representation.

Decision Support The decision support abstractions can,
at a high-level, all be seen as functions: based on a list of
arguments, the function returns one or more values. Plain
functions are available for arithmetic calculations. However,
it is typical for medical decisions to depend on the interac-
tions between several criteria. To make them more readable
(and this easier to validate), they are often represented as de-
cision trees (Figure 8) or decision tables. A particular kind
of decision table is one that splits two values into ranges
and returns a result based on these ranges. Figure 9 shows
a table that returns a score based; scores represent standard-
ized severities or risks that are then used in the algorithm.
The number types with ranges, and their static checking (see
Figure 10), is also an important ingredient to being able to
represent the medical domain correctly.
Testing Testing is an important ingredient to the PLUTO
languages. For testing functions and function-like abstrac-
tions, regular JUnit-style function tests are supported; Fig-
ure 12 shows an example. The first of the tests in Figure 12
tests a function with one argument, the second one passes
an argument list, and the last one shows how complex data
structures, in this case, a patient’s replies to a questionnaire,

30 https://www.jetbrains.com/mps/concepts/

Figure 10. Numbers are specified with a range and a preci-
sion. The type system checks number ranges and precisions
even for simple computations with such values; the figure
above shows an error resulting from invalid ranges.

Figure 11. Equivalence partitions help test complex struc-
tures with relevant combinations of values.

Figure 12. Function tests call a function (or something
function-like, such as a decision tree or table) with the
arguments specified after given, and then check that the
expected valued is returned. The answers construct rep-
resents a user’s reply to a questionnaire; it can be seen as an
instance of a record.

are passed to the test. The table notations for testing based
on equivalence partitions in shown in Figure 11.

Scenario tests (Figure 13) are more involved because they
take into account the execution of algorithm over time. They
are expressed in the well-known given-when-then style,31

which is, for example, also supported by the Cucumber test
tool.32 To express the passage of time and occurencess at
specific times, the at notation is used. The execution of the
tests is based on a simulation. The number of steps and the
time resolution is derived from the scenario specification.
Simulation The purpose of the simulator is to let HCPs
“play” with an algorithm. To this end, the in-IDE interpreter
executes algorithms and renders a UI that resembles the one

31 https://martinfowler.com/bliki/GivenWhenThen.html
32 https://cucumber.io/

Figure 13. Scenarios follow the established given-when-
then style:given a couple of preconditions, when something
happens, then a set of assertions must hold. Scenarios ex-
press the passage of time, as well as points in when some-
thing happens or is asserted, using the at notation.

Figure 14. Control panel to configure the simulations.

on the final phone (Figure 15). A set of DSLs is available
to style the UI, to some degree, lower-level styling support
is available through Javascript and CSS. A control panel lets
users configure a particular simulation and also fast-forward
in time (Figure 14). There is also a debugger that, while
relying on the same interpreter, provides a lower-level view
on the execution of algorithms. It is not used by HCPs.
Documentation Generation One important kind of output
is the medical protocol, a visualization of the overall algo-
rithm for review by HCPs or associated medical personnel
not trained in the use of the PLUTO DSLs. The outputs are
too large to show here; they are essentially graphviz-style
flow charts with a couple of special notational elements. It
is often necessary to highlight specific aspects on the overall
algorithm. To this end, the generation of the flow chart can
be configured using a DSL (Figure 16). It supports:

• The level of detail (Deep in the example)
• The tags that should be included and excluded. Model el-

ements can be tagged, for example, with whether they are

Figure 15. The simulator lets users play with an algorithm.
DSLs are available to style the UI. Note that, while an
iPhone-style frame is shown, the simulator does not run on
Apple’s iOS simulator.

Figure 16. Configuration for the generation of medical pro-
tocol flow charts.

part of the default flow or whether they are relevant for
complications in the treatment. A generated visualization
might want to highlight specific tags.

• Color mappings for tags (e.g., render the case for compli-
cations in red)

• Human-readable labels for states or messages in order to
make them more understandable for outsides.

The reason why these configurations are represented as mod-
els (expressed in their own DSL) as opposed to just config-
uring a particular visualization through a dialog is that many
such configurations exist, and they must be reproduced in
bulk, automatically, as the algorithm evolves.

