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Abstract

Many aspects in robotics, and their omnipresent ideal models, animals and humans,
are still not understood or explored well enough, for example producing motions of
animal- and human-like complexity. To explore the inner workings of systems studying
this complexity, the essential concepts of interest need to be made explicit and raised
from the code-level to a higher level of abstraction to be able to reason about them.

This work introduces a model-driven engineering approach for complex movement
control architectures based on motion primitives, which in recent years have been a
central development towards adaptive and flexible control of complex and compliant
robots. The goal is to realize rich motor skills through the composition of motion
primitives. This thesis proposes a design process to analyze the control architectures
of representative example systems to identify common abstractions. Identified and
formalized concepts can then be used to automate software development of motion
primitive architectures through model-driven engineering methods and domain-specific
languages. It turns out that the introduced notion of motion primitives implemented
as dynamical systems with machine learning capabilities, provide the computational
building block for a large class of such control architectures. Building on the identified
concepts, a set of modularized domain-specific languages allows the compact specifica-
tion of motion primitive architectures. This paves the way for domain experts rather
than computing technology specialists to produce systems, which is one of the main
goals of this work.

The approach and the accompanying model-driven engineering toolchain is evalu-
ated in a task of the European Robotics Challenges (EuRoC) and a real world ex-
ample of automatic laundry grasping with the KUKA Lightweight Robot IV, where
executable source-code is automatically generated from the domain-specific language
specification.
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Chapter 1.
Introduction

“What I cannot make, I do not understand”
Richard Feynman

This quote by physicist Richard Feynman sets the tone for this thesis. Feynman
meant here that understanding something is not just about working through advanced
mathematics. “One must also have a notion that is intuitive enough to explain to an
audience that cannot follow the detailed derivation.” Feynman’s position was some-
what radical: Once, a colleague of Feynman said to him:

“Explain to me, so that I can understand it, why spin one-half particles obey Fermi-
Dirac statistics.” Feynman said, “I’ll prepare a freshman lecture on it.” However, he
came back a few days later to say, “I could not do it. I could not reduce it to the
freshman level. That means we do not really understand it.”

Lots of aspects in robotics, and their omnipresent ideal models, animals and humans,
are still not understood or explored well enough. To explore the inner workings of such
complex systems, however, producing hundreds and thousands of lines of source code,
constructing the n-th prototype with isolated functionality is certainly not the answer,
as it hides the essential concepts behind general-purpose language source code. Yet,
this approach is still fashionable in robotics.

This thesis aims at an environment where formulation of scientific problems and
their solution hypotheses is done in natural notation with domain-specific languages.
Technological support then allows validation of these on real executable robotics sys-
tems without the need to read hundreds and thousands of lines of source code or write
them by hand.

1.1. Problem Statement

The current state of affairs in robotics research is still to a large extent building on
isolated islands of functionality that are implemented by hand. One of the problems
with this kind of development is that manual implementation takes time, requires
software development skills, and is inherently error-prone. This is especially hard
since robotics is an inter-disciplinary field, requiring handling of multiple disciplines
and technologies to create a working system. Experts of a certain discipline (i.e.
“domain experts”) often either need to learn the necessary software development skills,
or software developers need to be trained in a certain domain, learn about the essential
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Figure 1.1.: Left hand trajectories generated with a motion primitive and executed
on the iCub humanoid robot to execute a reaching motion.[Reinhart and
Steil, 2011]

questions, concepts and methods, in order to realize an executable robotics system to
test a certain scientific hypothesis.

The domain targeted by this thesis is the domain of robotics movement architectures
based on so-called motion primitives. Motion primitives resemble building blocks
of complex motions that can generalize to new situations or environments and are
robust to perturbations. Motion primitives as flexible and adaptive building blocks
for complex motion skills build on insights from biology that suggests that complex
motions in animals and humans arise from the composition of these primitives [Bizzi
et al., 2008]. Animals and humans orchestrate a vast number of muscles to move in
a very flexible way and to optimize complex motions for each task. By using the
representation of motion primitives, the need to generate detailed trajectories for all
variables of all muscles is reduced.

Applying this theory to the field of robotics is motivated by the idea that accordingly
the large number of parameters of all degrees of freedom in an advanced compliant
robot and the according computational requirements can be handled through com-
putational building blocks that mimic their biological counterparts. An example of
a motion primitive reproducing a motion on a robot is shown in Fig. 1.1. A motion
primitive with a trained movement shape reproduces a motion of the robot hand from
varying start points to the same target point with the trained dynamics that determine
the shape of the motion, e.g., for grasping. Combination, sequencing, and composition
of several of such modular movement building blocks then form complex, rich motions
that can be adapted to various tasks and environments.

Several research projects in the domain of motion primitives based movement gener-
ation in robotics already successfully applied this idea, combining discrete and periodic
movements to, e.g., catch objects in flight [Shukla and Billard, 2011], walk a quadruped
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robot on unperceived rough terrain [Ajallooeian et al., 2013], and a humanoid robot
dancing [Nakaoka et al., 2004] or drumming [Degallier et al., 2006]. This domain,
however, shares the overall problem of robotics research, being dominated by single,
yet incompatible, and handcrafted experiments and solutions [Nordmann and Wrede,
2012]. This means that tremendous code-bases (robotic frameworks, tools, libraries,
middleware systems, etc.) coexist without interoperability, which is the base hypoth-
esis for motion primitive, though.

This calls for a unifying conceptual framework, which allows the combination of
different experiments and their motion primitives to explore the design space of motion
control architectures. This is challenging both because of the intrinsic complexity
of the underlying control problems and due to the conceptual fragmentation of the
domain.

1.2. Contribution and Research Questions

The problems discussed above indicate that research in motion primitive architectures
for robotics, especially combination of motion primitives, needs support. Model-driven
engineering methods [Schmidt, 2006] are known to cope with the challenges of build-
ing complex heterogeneous systems in domains such as aerospace, telecommunication
and automotive [van Deursen et al., 2000], which face similarly complex integration
and modeling challenges as advanced robotics. Model-driven engineering (MDE) ap-
proaches primarily focus on creating and exploiting domain models, i.e., conceptual
models of the topics related to a specific problem. A model in this sense represents a
particular viewpoint or perspective of a concept. It is “an abstraction of a system often
used to replace the system under study” [Rodrigues da Silva, 2015] and is created with
the purpose to reason about its properties and relationships. In recent years, several
model-driven engineering approaches have been adapted to the robotics domain [Nord-
mann et al., 2014], yet not to the domain of motion primitive architectures.

A particularly promising method in the field of MDE is to formalize the domain
knowledge with so-called domain-specific languages (DSLs) and thereby make it avail-
able for automating development of executable robotics systems. A domain-specific
language (DSL) is a “programming language or executable specification language that
offers, through appropriate notations and abstractions, erpressive power focused on,
and usually restricted to, a particular problem domain” [van Deursen et al., 2000].
The abstractions are “natural/suitable for the stakeholders who specify that particular
concern” [Volter et al., 2013]. The concrete syntax of a DSL enables higher under-
standability and efficiency because the syntax and notation is closer to the problem
domain than general-purpose languages (GPLs).

Fig. 1.2 shows a typical DSL based modeling approach as it is targeted by this work.
The metamodel defines the concepts and abstractions to cover the domain, such as
motion primitive architectures in this work. A DSL adds a concrete, e.g., textual or
graphical, syntax to the metamodel and allows formulation of domain models, i.e. a
concrete system or application. The actual executable robotics system can be created
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Figure 1.2.: A typical modeling approach with DSLs: The DSLs add a concrete syntax
to a metamodel and are used to implement a concrete domain model. Code
generation is one approach to make the domain models executable.

from the domain models, e.g., by means of code generation.

This thesis aims at a development process that lifts specification of motion primitive
architectures from general-purpose language code level to a higher level of abstraction
in terms of the essential concepts of this domain. If this specification is formalized,
e.g., with the help of domain-specific languages, it can be technologically supported
to allow validation of these architectures and their execution on real robotics systems
without the need to understand general-purpose language source code or write it by
hand. Therefore, the overarching goal of this thesis is to

establish a model-driven engineering process to efficiently bootstrap and
exploit motion primitive architectures in order to ease and speed-up Te-
search for experts of the domain.

To the best of the author’s knowledge, no such process or DSL for motion primitive
architectures in advanced robotics exists so far. The following research questions will
be investigated and discussed in the course of this thesis to pursue this goal:

RQ1 Can the complex domain of motion primitive architectures consisting of advanced
robotics hardware, distributed software, dynamical systems, and machine learn-
ing approaches be exploited and supported by means of model-driven engineering
methods?

RQ2 Do these methods make the domain accessible for efficient development processes
to ease creation and execution of motion primitive experiments on real robot
systems for domain-experts?

RQ3 Can these methods be open and flexible enough to allow continued research in the
domain while at the same time producing stable systems for experimentation?

RQ4 Can legacy work in terms of both, established development processes as well as
existing software artifacts, be incorporated to ease and lower the risk of intro-
ducing model-driven engineering methods into robotics research?
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Figure 1.3.: Outline of this thesis, discussing the modeling of motion primitive archi-
tectures from a conceptual perspective, a developer’s perspective, and a
user’s perspective.

Once this is established, domain experts can formulate their scientific hypothesis
in a domain-specific language that is natural to them and restricted to their problem
domain. Domain-specific model validation and verification based on the formal models
can prevent errors already during specification and code generation allows execution
of the motion primitive hypothesis and experiments.

1.3. Outline

The remainder of this thesis investigates and discusses the research questions from
three perspectives: from conceptual point of view, from a developer’s perspective, and
finally from a user’s perspective. A developer in this sense is the software developer
who designs a model-driven engineering process to ease research and development for
the wuser, the domain expert. Fig. 1.3 shows an overview of these three perspectives
and their respective chapters.

The conceptual view in Chapter 2 — Chapter 4 discusses model-driven engineering
methods and domain-specific languages, introduces the motion primitive domain in
more detail, and proposes a design process to systematically set up a model-driven
engineering process for motion primitive architectures:
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Chapter 2 introduces the basic notation and related work of model-driven engineering
in robotics. It introduces the language modularization, extension, and compo-
sition (LMEC) approach proposed by Volter [2013] to decompose a metamodel
into a set of composable domain-specific languages and briefly discusses model-
driven engineering approaches related to this work.

Chapter 3 introduces the basic notion of motion primitives as adaptive building blocks
for complex motions and introduces the domain of flexible movement generation
in robotics with motion primitives. It briefly outlines a domain analysis con-
ducted in the motion primitive domain and provides an overview on standard
methods.

Chapter 4 proposed a design process for the motion primitive domain based on the
language modularization, extension, and composition approach proposed by
Volter [2013]. It relates to the introduced problem formulation and discusses
how the process will lead to the main two artifacts that will be detailed in the
course of this thesis: i) a conceptual framework and domain-specific languages
targeted to the motion primitive domain, as well as ii) a toolchain that links
these concepts with executable artifacts by means of code generation.

The developer’s perspective discussed in Chapter 5 — Chapter 7 details development
and specification of a motion primitive architecture metamodel, creation of domain-
specific languages by adding concrete syntax, and presents a programming model to
homogenize software development for motion primitive architecture in a compatible
manner.

Chapter 5 Starting with the developer’s perspective, Chapter 5 introduces the concep-
tual framework and metamodel developed in this work as a result of the domain
analysis and challenges introduced in Chapter 3 and Chapter 4. It details the
models to describe the static structural aspects of motion primitive architectures
as well as their dynamic behavioral aspects.

Chapter 6 details design dimensions of domain-specific languages and how the intro-
duced metamodel is decomposed into a set of DSLs along the LMEC approach.
It discusses the language modularization, design, and transformations of the
domain-specific languages developed in this work.

Chapter 7 introduces a programming model compatible with the metamodel that
provides an application-programming interface for developers to implement mo-
tion primitives and proposes a method to integrate legacy code into the proposed
model-driven engineering process. It then introduces an exemplary technology
that is used for development and as basis for code generators in the course of
the thesis.

The user’s perspective, i.e. the perspective of domain experts to be supported in
their research, is discussed and evaluated in Chapter 8 — Chapter 10 based on the
toolchain and the model-driven engineering process provided to the domain expert.
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Chapter 8 starts with the user’s perspective and discusses a toolchain developed in
this work that results from the proposed design process. It is the tool exposed to
the domain expert to support them with proper editors, model verification and
validation, as well as code-generation to produce executable motion primitive
architecture experiments.

Chapter 9 builds on this toolchain and shows how modeling of a motion primitive
architecture is done in the proposed model-driven engineering process, termed
Hypothesis Test Cycle. It discusses the different modeling steps that are con-
ducted by different roles of the overall development process.

Chapter 10 evaluates the presented model-driven engineering process in two complex
examples. A qualitative evaluation investigates the complexity of the systems
that can be developed with the proposed methods in two concrete case stud-
ies and how the raised level of abstractions helps in their development. An
additional quantitative evaluation compares the required DSL code and the gen-
erated source code in terms of source lines of code to investigate the gained
expressiveness of the proposed DSLs.

Finally, Chapter 11 discusses the presented results and concludes with lessons
learned and future perspectives.
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Chapter 2.
Model-Driven Engineering in Robotics

This thesis proposes a model-driven engineering approach [Rodrigues da Silva, 2015,
Stahl et al., 2006, Zhang and Cheng, 2006] as an answer to the challenges of the robotics
domain, especially challenges of motion primitive architectures. This chapter focuses
on the methodical approach for the development of the necessary software architecture
for enabling the integration, composition and control of motion primitives and the
adjacent disciplines and subdomains.

Model-driven and domain-specific development methods are recognized to cope
with the challenges of building complex heterogeneous systems in domains such as
aerospace, telecommunication, and automotive [van Deursen et al., 2000], which face
similarly complex integration and modeling challenges as today’s advanced robotics.
For this reason, model-driven engineering (MDE) approaches are more and more ex-
plored and adopted by the robotics domain to cope with the huge problem space and
increasing complexity of robotics systems [Schlegel et al., 2010, Nordmann et al., 2014]
eventually aiming “towards industrial-strength robotics systems” [Schlegel et al., 2009]
in terms of their maturity and robustness.

This chapter is intended to provide an overview on MDE and discuss the state of the
art in robotics and related domains to provide a baseline for this work. Section 2.1 in-
troduces important concepts, terms, and definitions of MDE. The discussion is focused
on the concepts and terms that are important in the robotics domain and the context
of this work, especially domain-specific languages. Section 2.3 discusses the state of
the art of model-driven engineering approaches in robotics and Section 2.4 discusses
systematic processes to the design MDE approaches, their models and languages.

2.1. Model-Driven Engineering

The main characteristic behind MDE is that its primary software development focus
emphasizes creating and exploiting domain models rather than general-purpose lan-
guage (GPL) source code. Domain models are conceptual models that represent a
concept of the domain from a certain viewpoint or perspective. It allows reasoning
about its properties and relationships in a system. Hence, it aims at expressing systems
in abstract representations of the knowledge and activities of a particular application
domain, rather than the technological aspects. A major advantage of this approach
is that systems expressed in models are independent of an underlying implementation
technology and closer to the problem domain than GPLs. This makes the systems

13
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Meta-Metamodel M 3
Metamodel
—————————————— T———add/sconwoebeuym Y, BEEEEEEEEEE M2
DSL DSL
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i Domain Model Domain Model M1

Executable
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Figure 2.1.: Four levels of modeling of modeling, from metamodel to GPL code, con-
forming to the OMG’s MDA standard [OMG, 2014].

easier to specify, understand, and maintain. It thereby paves the way for domain ex-
perts rather than computing technology specialists to produce systems, which is one
of the main goals of this work.

2.1.1. Levels of Modeling

The typical levels of modeling are shown in Fig. 2.1, conforming to the Model Driven
Architecture (MDA) standard of the Object Management Group (OMG) [OMG, 2014].
M3, the meta-metamodel is the highest level of abstraction and provides the concepts
and constraints that the metamodel and the domain-specific languages (DSLs) have to
satisfy. M2, the metamodel, provides abstractions to cover the domain, in the case of
this thesis the domain of motion primitive architectures. DSLs are on the same level,
as they realize the metamodel by adding a concrete, e.g., textual or graphical, concrete
syntax to it. M1, the domain models, uses M2 to express applications or systems.
Level M0 is the actual real-world robotics systems implementation, i.e., executable
GPL code that can be generated from M1.

One of the main advantages of MDE is that models are less sensitive to the chosen
computing technology and to technological changes [Selic, 2003]. This is especially
beneficial in a robotics research context, where not only the concepts but also the
platforms and technologies are often still evolving and therefore changing rapidly. The
concept of platform independent models (PIMs) is often closely connected to MDE.
Apart from the general advantages and disadvantages of MDE, some of its features
are especially relevant in the context of robotics and the targeted domain of motion
primitive architectures.

14



2.1. Model-Driven Engineering

2.1.2. Separation of Concerns

Ramaswamy et al. [2014b] identify several main features to model-driven engineer-
ing approaches in robotics. One of the most important in robotics is separation of
concerns to manage the complexity of robotics systems, typically involving functional
components of different domains such as visual perception, navigation, control, as
well as various hardware and software components. Especially in research, technology
neutrality and explicit modeling of the domain knowledge is important to keep mod-
els and their properties and specification independent from a particular technology.
In research, the target technology is often not as clear as in industrial applications,
sometimes still evolving and under construction. Targeting different technologies, even
in parallel, his can be achieved by providing various transformations from a PIM to
different platform specific models (PSMs) for code generation.

Since modern robotics applications, e.g., service robotics applications and applica-
tions involving physical human-robot interaction (pHRI) are often applied in unstruc-
tured environment, static and dynamic variability is another key point. Static vari-
ability denotes the configuration of the system and dynamic variability its coordination
in terms of the 5Cs (Communication, Computation, Configuration, Coordination, and
Composition) [Vanthienen and Bruyninckx, 2014]. Especially in unstructured envi-
ronment and open-ended scenarios, models play to their full potential when they can
also be used at run time, e.g., to explicitly model the variabilities and variation points
during the system design to help finding the best possible solution or adapt during
run time. This allows to reason on the models at run time, which, however, is not yet
widely used in robotics MDE approaches [Ramaswamy et al., 2014b].

2.1.3. Viewpoints

In the robotics domain due to its intrinsic interdisciplinary nature the creation of
multiple models is “usually necessary to better represent and understand the system
under study”” [Rodrigues da Silva, 2015]. There is a “growing consensus on the need
to move to comprehensive, view-based approaches” [Atkinson and Tunjic, 2014] cover-
ing the different concerns, aspects, and disciplines, as it is done in most of the MDE
approaches reviewed above. A view or viewpoint in this sense is a representation of a
whole system from the perspective of a related set of concerns. The term wview is often
used for the technical view, defined by IEEE STD 1471-2000 [IEE, 2000] as “a repre-
sentation of a whole system from the perspective of a related set of concerns. Views
are not necessarily orthogonal, but each view generally contains specific information.
In MDA [OMG, 2014], a view is a collection of models that represent one aspect of
an entire system.” The term wviewpoint describes the concern that is shown in a view,
defined by IEEE STD 1471-2000 [IEE, 2000] as “a specification of the conventions for
constructing and using a view.” It is “a form of abstraction achieved using a selected
set of architectural concepts and structuring rules, in order to focus on particular
concerns within a system.”[ORMSC, 2001]

According to Atkinson and Tunjic [2014], it should be possible to completely repre-
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sent the subject using the available views, while the number of viewpoints should be
minimal and have minimal overlap. It is largely unclear what the best number of views
and viewpoints is, but separating one particular concern into separate viewpoints can
be useful, especially if different stakeholders specify different concerns of a domain.
However, if different viewpoints are used for modeling of systems, constraints have to
check for their consistency. A simple check is to validate that the target elements of
references between viewpoints actually exist, since references will break if they do not.
Different roles and stakeholders can the create and maintain the various fragments
separately in the development process, while referential integrity is taken care of by
the modeling environment. The viewpoint separation is therefore strongly aligned with
the development process.

2.2. Domain-Specific Languages

To allow intuitive editing of domain models, targeting the automation of the software
development and their execution, domain-specific languages additionally extract and
add agreed-upon syntax and semantics from the problem domain to these models. Ac-
cording to van Deursen et al. [2000], a DSL is a “programming language or executable
specification language that offers, through appropriate notations and abstractions, ex-
pressive power focused on, and usually restricted to, a particular problem domain”.
The abstractions and notations of a DSL must be “natural/suitable for the stakehold-
ers who specify that particular concern” [Volter et al., 2013], e.g., by reviewing existing
code examples and application-programming interfaces (APIs), through the analysis
of formal descriptions found in the literature, or the application of further analysis
patterns [Mernik et al., 2005]. The identified abstractions and desired notations can
be realized as a language that expresses the domain models.

In contrast to GPLs such as C++4, Java, or Python, DSLs usually contain only a
restricted set of notations and abstractions. Compared to external DSLs that define
their own syntax and semantics, so-called internal DSLs are embedded in extensible
GPLs such as Python, Lua, or Ruby. They extend the syntax and potentially the
semantics of the host language with domain-specific notations and abstractions. This
adds the expressive power of the DSL to the GPL. While internal DSLs typically rely
on (and are bound to) the execution semantics of their host language, external DSLs
can be transformed to a format that directly allows execution on a target platform or
interpretation, e.g., through a virtual machine.

Similarly, domain-specific modeling languages (DSMLs) that use graphical nota-
tions must be differentiated from general purpose modeling languages (GPMLs) such
as Unified Modeling Language (UML) or Systems Modeling Language (SysML). While
it is still possible to add domain-specific abstractions to these languages, e.g., us-
ing UML Profiles (cf. Modeling and Analysis of Real Time and Embedded systems
(MARTE) [Gerard and Selic, 2008] that extends UML with abstractions to describe
and analyze real-time systems), adding domain-specific notation to graphical model-
ing languages is much harder. GPMLs typically provide a larger number of generic
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constructs and notation, which allows their application in different domains, e.g., the
modeling of object-oriented software systems in UML. In contrast, DSMLs (as well as
textual DSMLs) are typically comprised of a smaller set of concepts and graphical no-
tations that are close to the respective application domain [Rodrigues da Silva, 2015].
A common practice for the definition of GPMLs is the use of the UML Profile mecha-
nism that allows adding domain-specific abstractions to UML, e.g., MARTE [Gerard
and Selic, 2008] for modeling and analyzing real-time systems.

In order to efficiently implement and apply a DSL approach for the development
of robotics systems and to fully exploit its benefits, DS(M)Ls are typically realized in
toolchains tailored to model-driven development such as the Eclipse Modeling Project
(EMP) [Gronback, 2009]. These so-called language workbenches offer extensive sup-
port for the development of the DSLs themselves and for the actual system modeling
tasks performed by a language user. DSLs developed in these environments facili-
tate the users modeling tasks typically with textual and/or graphical editors with rich
code completion and dynamic constraint checking. Furthermore, these environments
typically provide model-to-model transformations (M2Ms) and model-to-text transfor-
mations (M2Ts) in order to generate code from system models that integrates with
the overall environment used for the development.

One of the main difference between metamodels and DSLs is that they add concrete
syntax and a natural notation to them, e.g., textual syntax, tabular syntax, mathemat-
ical expressions, or a graphical notation. This allows targeting a language to domain
experts by providing them with their natural notation and reasonable defaults, easing
the overall development. Two fundamental characteristics of well-designed DSLs are
therefore their expressive power targeted to a specific domain and the definition of
formal notations intuitively understandable for domain experts while being machine
processable, eventually yielding executable applications.

Advantages of using DSLs in development are that they “can reduce the costs related
to maintaining software.” [Deursen and Klint, 1998] They enable users without soft-
ware engineering experience to create programs as long as they possess knowledge of
the targeted domain. On top of that, DSLs provide the “ability to generate more veri-
fication on the syntax and semantics than a general modeling language does.” [Nguyen
et al., 2014] A disadvantage of DSLs is a long learning curve for a new language, even
though as it is a domain-specific language, it would be a lot easier to learn than a
general programming language.[Nguyen et al., 2014]

2.2.1. Language Modularization

In the same way, modularization of software in object-oriented programming (OOP)
makes software development more efficient and software more reusable, being able to
reuse domain-specific languages or parts of them in new contexts makes designing
DSLs more efficient. This is especially relevant in multi-disciplinary fields such as
robotics. Language modularization allows defining separate concern-specific DSLs,
each addressing different concern of the domain. A program specified in these DSLs
then consists of concern-specific fragments. This approach promotes separation of
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Figure 2.2.: Language and fragment dependencies in the different types of language
modularization [Volter et al., 2013, Section 4.6].

concerns and language reuse. Domain experts and stakeholders can work on aspects
they are experts in, or particularly interested in, independent of others. It also allows
independent reuse of the language fragments as well as the languages themselves. This
avoids that new DSLs are developed for new problems, each covering several aspects
of the targeted domain, but being incompatible with other languages that also cover
similar aspects.

Volter et al. [2013] discuss an approach termed language modularization, extension,
and composition (LMEC) for language modularization that allows the design and com-
position of the syntax, constraints, editors, and code generators of different languages.
Vélter et al. [2013] distinguishes four different ways of composing languages. Fig. 2.2
shows how languages and fragments of these languages depend on each other. The
document symbols represent DSL fragments, i.e. programs represented in the DSL;
the boxes represent DSLs. Dashed lines show language dependencies, solid lines show
references between fragments. White and gray elements indicate the languages used
in the fragments:

Referencing A referencing language (12) depends on the referenced language (I1) when
at least one concept of language [2 references a concept from [1. This introduces
a direct dependency between these two languages, in that language (2 cannot be
used without language (1.

Extension Language extension enables mixing of concepts from two or more different
languages. The extending language (12) adds additional language concepts to
the extended language (I1). This also introduces a direct dependency between
these two languages, in that language [2 depends on language [1.

Reuse Language reuse is a combination of referencing and extension. An adapter
language 1, is created that extends a language [1 with concepts that reference
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concepts of a language [2 and thereby allows using both languages [1 and [2
without introducing a direct dependency between these two. This still allows
using /1 and 2 independent of each other in different context, when the adapter
language [, is not used. In this context, [2 is the context language and [1 is the
reused language.

Embedding Language embedding is similar to reuse, but instead of establishing ref-
erences between concepts of the two languages [1 and [2, instances of concepts
from both language [2 are embedded into the same fragment. This also needs an
additional adapter language [,. In this case, [1 is the host language that embeds
the language (2.

While referencing and extension introduce direct dependencies between languages,
reuse and embedding use so called adapter languages to make them usable together,
but does not introduce direct dependencies. This means, both languages can also be
used independent of each other. In the same way as for software components a smaller
dependency footprint eases reuse, the latter two types of modularization are preferred
in this thesis for languages of different concerns, as discussed in more detail for the
motion primitive architecture domain in Chapter 6.

2.3. State of the Art

In the last years, various model-driven engineering approaches were actively adapted
to the robotics domain to handle the complexity of robotics systems and help with the
separation of concerns regarding the functional architecture and software architecture.
Motivated from the positive results from the application of MDE in other domains
such as automotive and avionics, robotics software engineering is gradually moving in
that direction.[Schlegel et al., 2009, Ramaswamy et al., 2014b, Nordmann et al., 2014]
A common goal of these approaches is to support the development and ease design
space exploration. This requires supporting the entire experimental toolchain ranging
from purely functional modeling to software architectural and technical aspects such
as software deployment. This section does not and cannot cover the huge body of
related work, but rather highlights some relevant related MDE approaches in robotics
research and discusses how their design choices, commonalities, and differences relate
to the aspects introduced above. A more complete discussion on the state of the art
for MDE and DSLs approaches in robotics can be found in [Nordmann et al., 2014].
Most of the approaches emphasize the separation of concerns and employ code gen-
eration to map the models to executable systems. One of the most prominent ex-
amples, being featured in the European research project BRICS (“Best Practice in
Robotics”) [Bischoff et al., 2010], is the BRICS Component Model (BCM). Bruyn-
inckx et al. [2013] introduce a Component-Port-Connector (CPC) based model, which
is mapped to the Communication, Computation, Configuration, Coordination, and
Composition (5Cs) semantics [Vanthienen and Bruyninckx, 2014] and integrated with
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an Eclipse-based integrated development environment (IDE). Modeling in BRICS fol-
lows three steps: i) modeling the structural aspects in the CPC model, ii) adding
coordination aspects to the components using state machines, and iii) generating code
that targets Orocos [Bruyninckx, 2001] and Robot Operating System (ROS) [Quigley
et al., 2009] platforms. The first two steps belong to the PIM, the third step being
the PSM.

While BCM distinguishes the PIM into two models, the structural and the coor-
dination aspects, V3CMM [Alonso et al., 2010] provides a metamodel for structural,
behavioral, and algorithmic views. The structural model describes the static struc-
ture of the components, the coordination model describes the event driven behavior
of the components and the algorithmic model specifies the algorithm executed by the
components based on their current state. The structural view also maps to a Com-
ponent-Port-Connector model, the coordination model reuses UML state charts, and
the algorithmic models rely on UML activity diagrams.

Another approach with strong focus on separation of concerns, also using UML as
base technology, is SmartSoft [Schlegel et al., 2009, 2015, Steck and Schlegel, 2010].
It is a MDE approach focused on service-oriented architectures for service robotics.
It uses a DSML that is defined as a UML profile and separates middleware aspects
from algorithmic aspects. Component skeletons (termed component hulls) mediate the
external visible services of a component and internal component implementation. A
component hull provides links to four artifacts: i) internal user code, ii) communication
to external components, iii) platform-independent concepts (threads, synchronization,
etc.), and iv) platform-specific middleware and operating system. It is implemented
in an EMP based toolchain.

All the mentioned approaches emphasize their separation of concerns, which is typi-
cally separated into structural, coordination, and optionally computation views. From
the discussed approaches, VECMM has a particular strong focus on viewpoint separa-
tion, providing only loose coupling among different viewpoints. It has, however, only a
uni-directional relationship between its structural, behavioral, and algorithmic views,
so that these have to be manually corrected if one of the viewpoints changes [Ra-
maswamy et al., 2014b].

BCM and SmartSoft, amongst others, clearly separate platform independent model
and platform specific model, e.g., to keep the functional modeling independent from
the actual target platform. This is opposed to the Robot Construction Kit (Rock) [Re-
ichardt et al., 2012, Reichardt and Berns, 2013] for example, which clearly states its
dependency to Orocos as a platform and targets easier development for Orocos. Its
tool oroGen supports specification and code generation for three artifacts: i) toolkits,
ii) task contexts, and optionally iii) the static deployment of components. It does
not aim for platform-independence, but rather supports specification of systems and
applications for Orocos in an easy and reliable manner.

Another MDE example closely related to the domain targeted with this thesis is
MiRPA (“Middleware for Robotic and Process Control Applications”) [Kroger et al.,
2004, Thomas et al., 2003, Finkemeyer et al., 2007]. MiRPA is an architectural ap-
proach centered on so-called manipulation primitives (MaP), which are small primitive
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tasks that can be combined to complex tasks. MaPs are the expert mode, formulated
in the task-frame formalism (TFF) [Kroger et al., 2004]. They are supposed to be
combined to more complex tasks (skills) by non-experts in the form of directed graphs
of MaPs (primitive nets). A Matlab/Simulink interface allows models from within
Matlab to be executed as MiRPA-modules. Interpretation and execution of primitive
nets generates setpoints for the respective robot controllers.

2.3.1. Domain-Specific Languages

A significant number of MDE approaches in robotics facilitate DSLs as shown in
a survey on DSLs in robotics by Nordmann et al. [2014]. Those approaches have
an inherently strong focus on separation of concerns; in fact, most of the DSLs are
dedicated to a specific concern. A recent example is the SafeRobots framework (“Self
Adaptive Framework for Robotic Systems”) [Ramaswamy et al., 2014a] for developing
software for robotic systems. The first phase of the SafeRobots development process is
modeling of the domain knowledge in terms of ontologies, DSLs, or knowledge graphs,
before these are used for modeling of an actual problem, its solution, and finally
generating GPL code for execution. Ramaswamy et al. [2014a] show two examples
with i) a system integration and knowledge representation problem, and ii) the issues
associated with robotic system development in an industrial scenario.

RobotML (“Robot Modeling Language”) introduced by Dhouib et al. [2012] is an
example explicitly following a language modularization approach. RobotML is from
the European PROTEUS project, which covers design, simulation, and deployments
aspects of robotics applications and is based on an ontology. It is separated in what
they call “packages”, separate platform-independent languages for structural, behav-
ioral and communication aspects, as well as platform-specific languages for deploy-
ment. Schlegel et al. [2015] integrate two language modules [Steck and Schlegel, 2011,
Lotz et al., 2013] for different runtime variability mechanism in their SmartSoft devel-
opment environment.

These are also two of only a few examples that exploit models not only for generating
executable artifacts, but also at run time, e.g., to allow reasoning based on these mod-
els. Steck and Schlegel [2011], Lotz et al. [2013] explicitly model run time variability at
design time to allow the robot to access these models, e.g., for resources management
and reason about different execution variants. Most MDE approaches in robotics,
however, target and support execution of their models via code generation [Nordmann
et al., 2014], e.g., [Dhouib et al., 2012, Schlegel et al., 2015, Ramaswamy et al., 2014a,
Reichardt et al., 2012, Bruyninckx et al., 2013|. Artifact generation from DSLs be-
comes especially powerful and suited for reuse if the toolchain supports different M2Ms
and M2Ts transformations. Either to generate different artifacts like visualization,
computational routines and glue code [Nordmann and Wrede, 2012], or executable
code for different programming languages or software platforms [Frigerio et al., 2013,
Klotzbiicher et al., 2011, Dhouib et al., 2012].
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2.4. Design Processes

While several MDE approaches in robotics propose development approaches targeting
a similar level of development support, only little is written on the systematic de-
sign processes that lead to the proposed models and languages [Schneider et al., 2014,
Nordmann et al., 2014]. One reason may be that the development of MDE and DSL
based approaches is often performed in an ad-hoc and implicit manner. Mernik et al.
[2005] discuss, however, that the identification and formalization of domain-specific
abstractions is an important decision pattern for DSL development. This is especially
important in the robotics domain, which contains a large-body of knowledge found
and developed outside robotics. In the course of this thesis, the term design process
is used to denote the systematic process of developing and designing models, DSLs,
and accompanying toolchain and establishing a model-driven engineering process to
distinguish it from the model-driven and DSL-based development process that is the
outcome of the design process.

Schneider et al. [2014] provide one of the most recent and most explicit discus-
sions of the design process of a DSL. They present and discuss a design process which
they reverse-engineered from the development of a concrete DSL for the specification
of grasping problems. Their design process distinguishes different roles of involved
persons and consists of several development phases. It starts with extraction and
analysis of domain knowledge and subdomains based on use cases, formalization of
this knowledge, development of tool support based on this formalization, and finally
modeling of use cases to validate the developed concepts and potentially iterate the
process. Dhouib et al. [2012] base their DSML on a robotics ontology to reuse the
incorporated expert knowledge in their DSL domain models. Laet et al. [2012¢] dis-
cuss how a thorough definition of the semantics of geometric relations [Laet et al.,
2012a,b] is formalized into an external DSL and an internal Prolog DSL. Ramaswamy
et al. [2014a] do not distinguish between the design process and the resulting MDE
development process, but consider the “General Domain Knowledge Modeling” that
comprises modeling of the domain knowledge with the help of e.g., ontologies, DSLs,
etc., as first part of their overall development process.

Some of the UML based approaches relate themselves to the MDA OMG [2014]
approach as defined by the OMG, which provides a standard for MDE. Its primary
focus is on platform independence by explicitly separating into platform independent
models and platform specific models. The core of the MDA concepts comprises the
UML, eXtensible Markup Language (XML) as well as the related XML Metadata
Interchange (XMI) specification, SOAP and other OMG standards. MDA defines
an approach to system specifications that separates the specification of the system
functionality from the specification of the platform specific implementation. UML
and XML are widely used and therefore open this approach to a large amount of
tool support, e.g., editing, visualization, code generation, and reverse engineering. An
issue with UML is that it is often too generic and vague to be efficient, missing more
abstract or specialized concepts. This issue can, however, be resolved by creating
domain-specific subsets of UML using so-called UML profiles. These allow tightening
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up the UML semantics and adding additional validation to it. The basic structure,
however, is still largely defined by UML, e.g. it is hard to remove parts of UML that are
not relevant or need to be restricted in a specialized language.[Dalgarno and Fowler,
2008]

Vélter [2005] proposes a different approach to software architecture that targets au-
tomation of many software development aspects by using domain-specific languages
instead of UML or UML profiles respectively. He proposes three phases of his architec-
tural process: First, in the elaboration phase, a technology-independent architecture
is defined, realized in a programming model and concrete implementation (technol-
ogy mapping). It is tested with a mock-platform (e.g. a simulator) and then with a
full vertical prototype (e.g. the robot hardware). The second iteration phase updates
results of the elaboration phase, especially the technology mapping and vertical pro-
totype, to incorporate lessons learned in the first phase and correct mistakes. Finally,
when the iteration phase produced a good result, a third automation phase sets of
tools and support to automate the architectural process, e.g., through DSLs and code
generation.

2.5. Discussion

MDE methods are recognized to cope with the challenges of building complex het-
erogeneous systems, such as motion primitive architectures for robotics systems as
targeted by this thesis. Its main characteristic, focus on creating conceptual domain
models rather than general-purpose language source code, suits the context of this
work, where users might reside in different disciplines without software engineering
background.

DSLs and explicit models allow eased communication about challenges of the do-
main, early technical integration, quantitative as well as qualitative validation and later
also automation of engineering tasks to ease experimentation and scientific analysis.
DSLs make these models conveniently editable by adding syntax, natural notation,
and reasonable defaults. Language modularization allows to define separate concern-
specific DSLs, each addressing different concern of the domain to allow reuse on a
language level, as it is successfully done on a software-level, e.g., in OOP, for many
years. As this modularization makes the separation of concerns explicit, it seems to
be especially suitable for the robotics domain in general and the motion primitive
architecture domain with its several included and adjacent subdomains, as shown in
Chapter 3.

Several of the approaches discussed in this chapter were developed or published in
the last years, in parallel to the work presented in this thesis. While this raises the
question of potential reuse [Nordmann et al., 2014] of the approaches, it can also serve
as an indicator for the need of model-driven engineering approaches in robotics as the
complexity of today’s advanced robotics systems surpasses the complexity that can
be handled with classical software development approaches. The MDE approaches
discussed in this chapter can serve to extract best practice in the domain and serve as
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a baseline to discuss the proposed approach.

While only a few approaches detail the design process that led to their models,
languages and development process, Chapter 4 introduces an explicit and systematic
process of applying the introduced model-driven engineering methods in the targeted
domain of motion primitive architecture.
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Chapter 3.
Motion Primitive Architectures

This thesis and the proposed model-driven engineering (MDE) approach target the
domain of flexible movement generation in robotics based on motion primitives. This
chapter provides the basic problem formulation and introduces the basic notion of
motion primitives that resemble adaptive building blocks for complex motions. It
turns out that the domain of motion primitive architectures is a complex domain
encompassing and bordering multiple different subdomains, to which related MDE
and domain-specific language (DSL) approaches are discussed.

One of the most basic and most important abilities of a robot is its ability to
move, either to navigate through its environment or to interact with it. This should
be done in a flexible and adaptive manner to be able to move and react in various,
cluttered and unforeseen environments. The embodiment position in cognitive science
emphasizes the role that the body and movement plays in higher level capabilities,
even stating that sensorimotor skills are necessary for all higher levels, e.g., reasoning
and intelligence. Typically, though, robots are equipped with a set of pre-defined
movements and movement capabilities, for example point-to-point (PTP) movements
in joint space, and linear (LIN), circular (CIRC) or spline-shaped (SPL) task space
movements. This is especially true for industrial robotics, where precision, speed, and
accuracy are important, usually more important than flexibility and adaptation.

Combinations of these movement capabilities allow creating precise movements that
can be repeated for thousands of cycles with high precision and high repeat precision.
While this serves the classical automation with large product quantities, new robotics
and automation disciplines are on the rise that call for more flexibility and adaptive
movement generation. Service robotics and flexible automation are two prominent
new and future application domains for robots that ask for more flexibility.

One of the most revolutionary and challenging features of the next generation of
robots will be their capability for physical human-robot interaction (pHRI). Robots
targeting at pHRI will be designed to coexist and cooperate with humans in applica-
tions such as assisted industrial manipulation, collaborative assembly, domestic work,
entertainment, rehabilitation, or medical applications. The robot application domain
more and more extend from factories to human environments, due to the aging society
in industrialized countries, automating more common daily tasks, and high cost of
human expertise. Especially in pHRI scenarios, it is desirable to have robots, which
do not only move accurately along pre-programmed paths, but show motion behavior
similar to humans in order to enhance the predictability and acceptance of the robot
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to the human interaction partner [Oztop et al., 2004, Chaminade et al., 2005].

These challenges require a repertoire of flexible motions and behavioral abilities,
which can cope with the complexity of the real world. Recent research in robotics aims
to extend their motion generation capabilities to the biological richness of humans and
animals. One of the research paths to achieve this is complex movement generation
based on combination and composition of so-called motion primitives.

In robotics, motions are typically represented either in joint space or in Cartesian
space, i.e. the hand or end effector coordinate systems. The concept of primitives exists
in both spaces, called motor primitive and movement primitives respectively [Mussa-
Ivaldi et al., 1994]. In the course of the thesis, the term motion primitives will encom-
pass both of these types.

3.1. Motion Primitives

To make a robot perform a desired movement, all degrees of freedoms (DoFs) (all
actuators) need to be supplied with appropriate motor commands. The commands
must be coordinated to fulfill the desired task, are within the range of the capabilities of
the movement system, and comply with external constraints, e.g., obstacles and other
constraints from the environment. Due to the number of DoF's in modern robots, e.g.,
humanoid robots, a large number of possible movement plans have to be considered
for every task. This large variety of movements renders it hard to make them available
at run time or to learn them.

The idea of motion primitives [Degallier, 2000] restricts this problem to a set of
combinable building blocks, typically consisting of autonomous dynamical systems that
can generate either discrete (point-to-point) or periodic movements. This approach
enables expressing and learning complex movements by adjusting a relatively small
set of parameters, both of the motion primitives and their composition.

In context of robotic systems, the representation of motion primitives is typically
given in form of dynamical systems [Schaal et al., 2005, Kajita and Espiau, 2008].
FEither non-autonomous dynamical systems:

u=g(a,u,t) (3.1)

where u is a state vector, ¢ is the time parameter and « gives a modulation parame-
ter, which can be used to modulate the speed of the system, or autonomous dynamical
systems:

u=g(x,u) (3.2)

where no explicit time dependency exists.

Dynamical systems are primarily used for their convenient features regarding flex-
ibility and robustness. They appear to be one of the most promising candidates as
computational basis for exploitation of flexible motion capabilities featured by mod-
ern humanoid robots [Luksch et al., 2012, Kajita and Espiau, 2008]. Autonomous
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Figure 3.1.: Example of a motion primitive reproducing an A-shape (left) and C-
shape (right) from different start configurations, learned from demonstra-
tion [Neumann et al., 2013].

dynamical systems can model goal-directed motion primitives to generate motions in
a variety of manipulation tasks.

An example of a motion primitive reproducing movements of different shapes and
from flexible start points to the same target point is shown in Fig. 3.1. A motion prim-
itive reproduces a trajectory (red, dotted) from flexible start points to the same target
point (green cross), e.g., to move an end effector. The dynamics of the motion primi-
tive, determining the shape of the motion, can be trained and adapted to the context,
for example the task or the environment, without losing the desired features of the
dynamical systems. In the example shown in Fig. 3.1, the dynamical system is trained
in an Extreme Learning Machine (ELM) [Huang et al., 2006] based on demonstrations
(black, dotted) [Neumann et al., 2013].

3.2. Learning Motion Primitives

The flexibility to adapt motion primitives to different situations and environments is
accomplished by means of machine learning techniques that can then fine-tune certain
additional parameters to improve the movement.[Schaal et al., 2005]

Several approaches have been proposed in the last years to represent motion primi-
tives for computation. A widely known recognized approach is called Dynamical Move-
ment Primitives (DMPs) [Ijspeert et al., 2002, 2013, Schaal, 2006], which is a technique
to generate motions with non-autonomous dynamical systems modeling spring damper
systems. The original DMP approach uses the following notation [Ijspeert et al., 2013]:

T = ay(Bu(g —u)u) + f(s)(g — uo)s, (3.3)

coupled with the canonical system:

TS = —0s8, (34)
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where «,, B, are stiffness and damping constants. The stability of this dynamical
system is ensured in case that the perturbation f becomes zero at the end of the
movement, which results in linear convergence to the goal point g.

Having a robotics expert programming all the necessary motion primitives is costly
and time consuming, especially when programming has to be repeated every time the
task conditions changes, and often not feasible at all due to the large number of DoF's
and tasks. An alternative approach to prepare a robotic system for given tasks is
programming-by-demonstration (PbD) [Kajita and Espiau, 2008] that allows to teach
motions relevant for a task by analyzing recorded trajectory data and generalize from
them to new situations. A tutor demonstrates the task either with their own body
(observed by a tracking system) or in physical interaction with the robot itself i.e.
kinesthetic teaching [Argall et al., 2009, Lee and Ott, 2011, Nordmann et al., 2015].

It is an established paradigm of recent years to use motion primitives to learn
motion skills [Pastor et al., 2009, Miihlig et al., 2012, Reinhart and Steil, 2012, Phung
et al., 2011], for example to get a library of motion primitives to compose complex
motions [Lemme, 2015, Mussa-Ivaldi and Bizzi, 2000].

3.3. Domain Analysis and Related Work

Control and learning architectures based on motion primitives is considered as domain
of this thesis that should to be supported by MDE and DSLs. The following section
describes the domain analysis conducted within this work to find out what the targeted
model-driven approach and the targeted DSLs should be able to support and what
relevant abstractions and notations they should be able to express. This is one of the
key issues in the development of DSLs. The core problem is to not only understand
one problem, but to understand a class of problems and its solutions [Volter et al.,
2013].

In order to do so, a feature-oriented domain analysis (FODA) [Kang et al., 1990]
is conducted on compliant robotics control among common robot control frameworks,
interfaces of compliant robots and their applications. The FODA is a formal domain
analysis method developed that introduced features models and feature modeling. A
feature in this context is defined as a “prominent or distinctive user-visible aspect,
quality, or characteristic of a software system or system” [Kang et al., 1990].

The resulting feature models, cf. Section B.1, are accompanied with a survey that
was conducted together with the research partners of the AMARS;i project!, in which
the survey was conducted, covering state of the art motion architectures based on
motion primitives [Nordmann and Wrede, 2012]. The domain analysis covered the
following architectures and their respective experiments and demonstrators:

Quadruped walking over unperceived rough terrain [Ajallooeian et al., 2013] A
control architecture for walking and re-balancing the overall pose of the robot. The
architecture is hierarchical and modular and couples together four basic mechanisms:

'AMARSi is a large-scale European integration project; see: https://www.amarsi-project.eu/
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i) a network of coupled central pattern generators (CPGs) (one per end-effector) to
generate a periodic gait, ii) a reflex mechanism that modulates the shape of the target
trajectories emitted by the CPG system if a leg hits an obstacle, iii) a proportional
feedback controller for making the 12 joint angles track the output of the reflex-
modulated CPG system, and iv) a higher-level, model-based control loop that stabilizes
this pose when perturbed.

Catching objects in flight [Shukla and Billard, 2011] Catching objects with a catch-
ing point not located at the center of mass and highly non-linear dynamics, e.g., a
tennis racket or a half-filled water bottle. This requires coordination between the
arm reaching motion toward the predicted catching location and the hand/finger pose
preparation for the actual catching, which is done by coupling two dynamical systems
that have been trained individually using the coupled dynamical systems method.

Mixture of controllers to learn inverse kinematics [Waegeman et al., 2013] Con-
trol architecture inspired by the MOSAIC control architecture [Haruno et al., 2001],
but different controllers specialize not on different tasks, but on different regions in
joint space.

Redundancy learning [Nordmann et al., 2012a] An approach utilizing the physical
interaction capabilities of compliant robots with data-driven and model-free machine
learning to allow fast (re)configuration of redundant robots in kinesthetic teaching.
This approach facilitates a hybrid controller to join machine learning capabilities with
analytical control.

Humanoid upper body control [Reinhart and Steil, 2012] Control architecture for
the iCub for three different bi-manual motion skills trained in physical human-robot
interaction. Convergence of a discrete primitive triggers the execution of subsequent
primitives.

The analysis covered a wide range of point-to-point [Ajallooeian et al., 2013, Shukla
and Billard, 2011, Reinhart and Steil, 2012] and periodic movements [Ajallooeian
et al., 2013, Reinhart and Steil, 2012] modeled by autonomous dynamical systems
and assessed functional and non-functional properties of their diverse implementa-
tions. Functional and non-functional properties were surveyed to assess the motion
primitives itself as well as their availability for the targeted development process. Func-
tional properties in this survey covered parametrization, data representation, learning
algorithms (e.g., online vs. offline learning, supervised vs. unsupervised learning), the
required sensor feedback, etc. Non-functional properties covered implementation lan-
guage, technical data representation, timing, software dependencies and availability,
etc. An example of the survey results for the DMP is shown in the appendix in
Table B.1.
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Figure 3.2.: Context diagram of motion architectures. Subdomains (ellipses) are di-
vided into core (blue), adjacent (green), and external (yellow) subdomains.

Related work for the domain of motion primitive architectures encompasses several
different sub-domains that all must play together in order to create an entire executable
robotics system as targeted by this thesis. Fig. 3.2 gives an overview on the subdomains
deemed relevant for motion primitive based movement architectures. This is restricted
to the motor domain and does not aim at a general cognitive architecture. For the
conceptual architecture, this restriction translates into excluding a large number of
important aspects of a cognitive architecture like, e.g., visual perception, attention,
language, reasoning, and other higher-level processes. In Fig. 3.2 subdomains are
divided into subdomains that are considered belonging to the core of the domain
(blue, solid), adjacent subdomains (green, dashed), and external subdomains (yellow,
dotted).

In the following the subdomains relevant for motion primitive architectures are
discussed, each with related MDE and DSL approaches, if available Nordmann et al.
[2014]. The corresponding chapters in the handbook of robotics Siciliano and Khatib
[2008] are annotated to the subdomains to relate them to generally acknowledged
reference.

3.3.1. Core Subdomains

Core subdomains are the main concerns, to which this work is dedicated. This means
that the approach of this thesis intends to allow concise and easy specification of these
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concerns.

Architecture

(cf. Part A Chapter 8, Robotic Systems Architectures and Programming [Siciliano and Khatib, 2008])

The main concerns of this subdomain are architectural building blocks and abstrac-
tions, connection patterns, hierarchies, coordination and composition. Well-covered
by roughly every second DSLs surveyed by [Nordmann et al., 2014] is the subdomain
of task-level coordination [Biggs et al., 2010]. DSLs of this subdomain are often used
for code generation and generate state chart or state machine like software artifacts.
Angerer et al. [2012], Nordmann et al. [2015], Thomas et al. [2013], Klotzbiicher et al.
[2011] for example generate code to realize motion tasks as state hierarchies, state tran-
sitions, and import or extension of existing states. Steck and Schlegel [2010] generate
constraints for a generic constraint solver from domain-specific models.

As the approach proposed in this work targets support for executable, runnable
systems, its mapping to software is also a main core concern that Siciliano and Khatib
[2008] assign to the architecture and programming subdomain. Software architec-
tures are necessary to execute motion primitives based systems and run them in a
reproducible way. Ringert et al. [2015] discuss advantages of Component-Port-Con-
nector (CPC) based architecture description languages (ADLs) that combine MDE
and component-based software engineering (CBSE) to reduce the conceptual gap be-
tween models and software. They already proved useful in the automotive, avionics,
and robotics domain. Existing and established ADLs like the Architecture Analysis
and Design Language (AADL), the Systems Modeling Language (SysML), the Unified
Modeling Language (UML), and Modeling and Analysis of Real Time and Embedded
systems (MARTE) allow specification of technical architectures and related aspects,
e.g., in terms of (software and hardware) building blocks, CPC, composition, commu-
nication and middleware concerns. They specify architectures on a generic level and
provide means for domain-specific extensions, such as UML profiles to extend UML.

Several recent robotics DSL approaches provide explicit support for software ar-
chitecture concerns in robotics, e.g., by mapping their functional models to concrete
technical artifacts [Baillie et al., 2010, Romero-Garcés et al., 2013, Nordmann et al.,
2012a, Kilgo et al., 2012, Dhouib et al., 2012, Brugali et al., 2012].

The architecture subdomain is related to the safety subdomain, e.g., in terms of
real-time capabilities and quality of service.

Motion primitives

(cf. Part G Chapter 59, Robot Programming by Demonstration [Siciliano and Khatib, 2008])

This subdomain focuses on representation of small building blocks of motion. Its
abstractions are motion building blocks with adaptability, flexibility and therefore
have a strong link to machine learning subdomain. However, no DSLs targeted to mo-
tion primitives in terms of dynamical system with machine learning extensions were
surveyed by Nordmann et al. [2014] or are known to the author to this date. Close
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to the concepts is the MiRPA approach that uses so-called manipulation primitives,
which are small primitive tasks that can be combined to complex tasks, yet, without
machine learning capabilities. They are combined to more complex tasks (skills) in
the form of primitive nets [Kroger et al., 2004, Thomas et al., 2003, Finkemeyer et al.,
2007].

Dynamical Systems This thesis focuses on motion primitives represented by dynam-
ical systems, which generate the dynamics of the motion. The author is not aware of
DSLs directly targeting this subdomain. A reason for this might be that notations and
expressions of this subdomain are already well covered by mathematical expressions,
therefore by several programming and modeling environments, e.g., MATLAB and
Mathematica, two proprietary state of the art computing environments.

Compliant Robot Control

(cf. Part A Chapter 6, Motion Control [Siciliano and Khatib, 2008])

Compliant robots are recognized to generate more natural motions than classical
rigid robots [Moro et al., 2011]. In order to execute motion primitives on a compliant
robot, control of the robots limbs or manipulators is required. This subdomain is
covered with roughly every second of the DSLs surveyed by [Nordmann et al., 2014],
however, especially kinematics, dynamics, and classical motion control.

Examples of this subdomain are contributions by Frigerio et al. [2013, 2012a] and
Laet et al. [2012¢] that target kinematics and dynamics controllers that can be em-
bedded in motion control systems. Artifacts generated from DSLs of the kinematics,
dynamics, and motion control subdomains are usually controllers as well as robot
simulation and visualization support Bordignon et al. [2010].

3.3.2. Adjacent Subdomains

Adjacent subdomains are considered part of the domain, but not primarily targeted
by this work. This means that their main abstractions need to be covered to be
included and used in the development, e.g., aspects that need to be supported on an
architectural level.

Force Control

(cf. Part A Chapter 7, Force Control [Siciliano and Khatib, 2008])

The force control subdomain targets robust and dynamic behavior of robotic systems
in compliant interaction with the environment. It includes different control aspects,
e.g., torque, stiffness, and impedance control. The subdomain is not very well covered
by MDE approaches and DSLs yet [Nordmann et al., 2014]. While several DSLs deal
with the dynamics of robots [Frigerio et al., 2013, 2012b], which is a pre-condition for
force control, only Klotzbiicher et al. [2011] make force control operations an explicit
concept of their language.
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Perception

(cf. Part C, Sensing and Perception [Siciliano and Khatib, 2008])

Although it is not a direct part of the motion control system of a robot, perception
is usually necessary in robotic systems and often strongly tied to motion. This is espe-
cially true for proprioception, sensing of the robot limbs, e.g., for obstacle avoidance
in fast sensorimotor loops. Therefore, external perception is considered an external
subdomain and the paragraph focuses on proprioception. Exemplary related MDE
and DSL are early publications by Henderson and Shilcrat [1984], Gordillo [1991] to
specify sensor systems and recent work by Hochgeschwender et al. [2013, 2014] for
specification of perception architectures.

Proprioception Proprioception in robotics is the sense of the relative positions, forces,
and torques of the robot’s limbs. Typical sensor values in robotics are joint angles,
joint velocity, joint acceleration, joint torques, but also its current Cartesian pose,
velocity and acceleration when gyroscopes and accelerometers are used.

Machine Learning

(cf. Part C Chapter 9.4, Robot Learning [Siciliano and Khatib, 2008])

Machine learning adds flexibility and adaptability to the motion primitives targeted
in this thesis. Nordmann et al. [2014] did not survey any DSLs dedicated to machine
learning. There are, however, machine learning DSLs outside the robotics context,
such as the work by Sujeeth et al. [2011] for description, analysis, and code generation
of machine learning approaches. Machine learning in this work has to be supported not
in detail, but to on an abstraction level that allows the introduced learning capabilities
of motion primitives, e.g., programming-by-demonstration, on an architectural level.

Physical Human-Robot Interaction

(cf. Part G Chapter 59, Robot Programming by Demonstration [Siciliano and Khatib, 2008])

Physical human-robot interaction is often a goal of natural movement generation
with motion primitives. Its abstractions and essential concepts are, among others,
interaction forces, interaction triggers, and kinesthetic teaching. This subdomain has
links to the machine learning subdomain in terms of programming-by-demonstration
and kinesthetic teaching, as well as to safety.

3.3.3. External Subdomains

External subdomains are the ones that regularly occur together with motion control
architectures, but are not covered by this work. Extension points to these are indicated
in the course of this thesis. The following sections therefore just indicate the links to
the core and adjacent subdomains.
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External Perception

(cf. Part C, Sensing and Perception [Siciliano and Khatib, 2008])

External perception (sometimes also referred to as “exteroception”) is the sensitivity
to stimuli originating outside of the body, as opposed to proprioception. It is regularly
used together with motion architectures, as it helps recognizing the environment, e.g.,
to detect goals, objects, and obstacles to be avoided. This subdomain is considered as
an adjacent subdomain, e.g., to generate high-level goals for the motion generation.

Safety

(cf. Part G Chapter 57, Safety for Physical Human-Robot Interaction [Siciliano and Khatib, 2008])
Safety is especially relevant in the context of pHRI. Robots targeted to pHRI must
fulfill several requirements to be suitable for collaboration. Requirements on the cycle
time or accuracy, aspects concerning reliability and dependability become more im-
portance as the robot works in contact with humans [Matthias et al., 2011, Haddadin
et al., 2009]. Only a few DSLs explicitly target safety concerns, an example being the
work by Adam et al. [2014] who present a DSL to specify safety-related rules that a
system must obey as well as corresponding actions when these rules are violated.

Reasoning / Cogpnition

(cf. Part A Chapter 9, AI Reasoning Methods for Robotics [Siciliano and Khatib, 2008])

For autonomy, the robot has to be able to reason about itself and its environment,
which can be supported by model-driven methods when those models are used at
run time. Robotics DSL approaches, however, still use their models and languages
mainly at design time [Steck and Schlegel, 2011, Nordmann et al., 2014]. Only a few
of the surveyed approaches use the models to exploit the represented knowledge also
at runtime, e.g., to model runtime variation points in the task at design time and
use them at runtime [Steck and Schlegel, 2010, 2011], or to synthesize DSL programs
while learning from demonstration as done by Feniello et al. [2014]. This subdomain is
considered as an external subdomain, e.g., to perform high-level planning and generate
goals for the motion generation.

3.4. Discussion

The domain of motion primitive architectures is a broad domain composed of several
subdomains and adjacent to even more, as shown above. This is recurring typical
problem in robotics since most of these domains need to be handled to create en-
tire running systems. This calls for integration support for users that are not and
(obviously) cannot be experts in all of these subdomains.

The main goal of the domain is the creation of rich motions of human-like or animal-
like complexity. Since the coordination and composition of several motion primitive
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into one architecture is the main hypothesis in order to reach this goal, a model-
driven engineering approach in this domain needs to support specification, develop-
ment, and composition of motion primitive architectures. Research on this hypothesis
with robotics systems is a big challenge due to two primary reasons:

1. Motion primitives are usually not explicit, but hidden in general-purpose lan-
guage (GPL) source code, intertwined with functional components from adjacent
subdomains, such as perception and motion planning, so that their properties
are hard to identify which makes the different motion primitive approaches hard
to combine with each other.

2. The same reason, single handcrafted motion primitive experiments, also leads to
a large corpus of valuable work basically not capable of being integrated on a
technical level, due to different programming languages, architectural decisions,
and platform dependencies (software and hardware).

This imposes several requirements for the targeted model-driven engineering ap-
proach as elaborated in Section 3.3, including i) specification of the motion primitive
itself in terms if dynamical systems and machine learning capabilities, ii) support of
periodic and goal-directed movements, iii) explicit handling of dependencies to the
robot in terms of perception and actuation, and iv) composition of motion primitive.
These challenges motivate the research questions introduced in Chapter 1 to ease and
support development and research in this domain.

While some of the required aspects are already covered by existing domain-specific
language approaches, as shown in Section 3.3, there is no model-driven engineering
approach available to solve this task. However, reuse of existing and available models
and solutions will be discussed in the course of this thesis.

The domain analysis and observations made in this chapter, together with the ob-
servations made in Chapter 2, motivate the objectives, functional and non-functional
requirements, and eventually the approach proposed in the following chapter.
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Chapter 4.

Model-Driven Engineering for Motion
Primitive Architectures

With the basic concepts of model-driven engineering (MDE) introduced in Chapter 2
as well as the main concepts, challenges and requirements of the motion primitive
architecture domain introduced in Chapter 3, this chapter proposes and instantiates a
clear systematic design process to deploy the discussed MDE methods in the motion
primitive architecture domain. To answer the research questions introduced in Chap-
ter 1, it follows a process of i) extracting domain knowledge, ii) separating the domain
knowledge by concerns iii) formalizing the domain knowledge, iv) providing devel-
opment support, and thereby providing a development environment for the domain
expert that allows easy formulation of domain problems, solutions and experiments
and to make them executable on robots.

The proposed design process employs and adapts existing patterns for software
architecture development [ORMSC, 2001, OMG, 2014, Volter, 2005], as introduced in
Section 2.4, which seem to be suitable for use in the targeted inter-disciplinary motion
control architecture domain. It aims for early integration and involvement of important
stakeholders and to establish an approach to ground the conceptual ideas found in
the domain analysis in a resulting architectural process to link theoretical research on
motor skills with software engineering science and robot hardware, eventually resulting
in executable and reproducible robotics experiments.

Section 4.1 discusses the research project context where the proposed MDE approach
is employed and discusses the specific challenges and requirements imposed in this
context. Section 4.2 translates these challenges in a set of more concrete objectives,
functional and non-functional requirements that need to be met by the proposed de-
sign process and its resulting domain-specific language (DSL) based MDE process. The
concrete design process that is proposed in this work and exemplified in the domain
of motion primitive architectures is detailed in Section 4.3.

4.1. Project and Domain Context

Employing an MDE approach in the motion primitive architecture domain in a research
context, as proposed in this thesis, introduces additional requirements apart from the
general requirements of the model-driven methodology and the design of the domain-
specific languages itself, as discussed in Chapter 2, and the requirements from the
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motion primitive architecture domain, as discussed in Chapter 3.

A first challenge is to consider the developer background and bias to ensure easy
introduction of the proposed method. Although the idea of motion primitives is driven
from biology, their developers, in this case researchers creating prototypes to test their
motion primitive (MP) hypotheses as the ones presented in Section 3.3, typically have
a strong bias to the development tools and environments they are used to [Ritter et al.,
2008]. In robotics, a domain typically strongly tied to software development, this bias
is usually directed to component-based software engineering (CBSE). CBSE systems
are best practice in software development and in principle allow composition of sys-
tems from re-usable components. This also needs to be considered when designing a
MDE process, since it is vitally important, in research projects as well as in almost
any project, to keep the entry threshold low to continuously being able to create and
maintain executable, run-capable systems. In an industrial project, the customer ex-
pects run capable proof-of-concepts and intermediate versions, in research projects the
project executing organization, e.g., the European commission, expects deliverables,
demonstrators and runnable experiments to verify project progress.

In a MDE approach, this is not possible in a pure forward process, as vertical
prototypes need to be developed first, software libraries need to be implemented, and
the core concepts have to be agreed upon and might have to be challenged and updated
regularly during the project due to new scientific results. This is not necessarily
the case in stable (as in: already stabilized) domains, but this is certainly true in a
research project like the European AMARSI project, where this process is employed
and concepts are developed and agreed upon during (almost) the entire lifespan of the
project.

When concepts are clear, or at least a first iteration, the MDE needs to be in-
stantiated and the resulting toolchain needs to be implemented and rolled-out to the
developers and integrated into their development process. However, even when a first
iteration of the concepts and toolchain is ready and developers are asked to start
adapting the model-driven development process, it is usually not realistic to cover
systems completely right from the start. This calls for a way to integrate existing
software artifacts, e.g., parts of the systems surveyed in Section 3.3, into the MDE
process.

A toolchain also should target covering technological needs from all involved devel-
opers. The conducted survey for example already surveyed four different languages
and platforms: C, C++, Python, and MATLAB. Even when it is not feasible to pro-
vide model-driven support for all these languages and environment, e.g., by providing a
technology mapping and code generation toolchain for all of these, developers should
not be completely locked out of the development process. Therefore, the targeted
approach should be open for integration of systems and components from different
environment and languages. This is not only a question of mitigating risk but also of
leveraging the corpus of previous (usually significant) development efforts.

From a practical point of view, this also opens the overall process to developers that
do not want to subscribe to a MDE approach and rather develop in the classical way,
e.g., with general-purpose languages, as they can integrate their hand-crafted compo-
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nents and systems. Although this is often not desired, as developments outside the
MDE process lose the corresponding advantages such as correctness by construction,
model validation, etc., this is based on project experience an important requirement
for adoption of a MDE approach.|[Selic, 2003]

4.2. Objectives and Requirements

The objectives for the design process are driven by the research questions formulated in
Chapter 1 as well as MDE best practices as discussed in Chapter 2 and the challenges of
combining motion primitives to rich motor skills in a research context, as discussed in
Chapter 3. The targeted domain-specific languages and their respective development
environment and process need to be expressive enough to represent the examples
found in the domain analysis in Section 3.3, yet address the challenges of the research
context as discussed in the previous section. In addition to expressing the (isolated)
experiments and examples found in the domain analysis, it additionally has to support
combination of motion primitives in a unified architecture to allow validation of the
base hypothesis of the domain, i.e. that the combination of motion primitives yields
rich motor skills.

Ease Specification of Domain Problems and Examples Problems and their solution
can be specified on different levels of complexity. However, the more complex the
specification gets, the more difficult it is to understand and to manage, thus increasing
the possibility of errors. One of the key techniques to deal with this problem of
complexity is through abstraction. By allowing different levels of abstractions, it is
possible to expose the complexity that is necessary in a particular context even of
complex problems. The design process therefore shall target an abstraction level that
allows coping with the complexity of rich motion skills, with motion primitives already
being a biologically motivated idea on how these abstractions could look like.

Platform-Neutrality Executing experiments on different robot platforms is one of
the natural requirements in robotics, but also explicitly stated in the European re-
search project AMARSI where this approach was deployed. Platform-neutrality has
a strong relation to abstraction, since abstracting problem and solution specification
from technological aspects not only helps coping with their complexity but also is a
key to platform-neutrality.

Restriction The main hypothesis behind motion primitives is that their composition
allows generation of complex motions. Yet, many motion primitives are bound to
specific platforms, i.e., robotics platforms and software frameworks, implemented in
different programming languages and against different application-programming inter-
faces (APIs), mixed up with other components or application code, and not explicitly
represented [Nordmann and Wrede, 2012]. As this threatens the idea of validating the
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hypothesis of motion primitives composition on robotics, the design process shall pro-
vide means to easily combine motion primitives, e.g., by restricting and homogenizing
the architectural choices in favor of compatibility.

Completeness The approach proposed in this work is targeted to motion primitive
experts and explicitly wants to avoid that they have to also become software engineers
in order to try their research hypotheses on robots. To achieve that programs do
modeled with the approach proposed in this work require additional configuration files
or code written in a general-purpose language (GPL) to make it executable, the models
and languages have to be complete. Completeness in this sense refers to the “degree to
which a DSL can express programs that contain all necessary aspects.” [Volter et al.,
2013] In cases where several viewpoints represent various concerns of a domain, the
set of fragments written for these concerns must be enough for complete generation in
order to fulfill this criterion.

Openness In the research context where this design process was deployed it is vital to
deal with the fact that a large corpus of legacy work is already available, both in terms
of previous classical development approaches as well as in terms of alreadyexisting soft-
ware artifacts. Introducing a model-driven and DSL based development process into
such a context needs to incorporate this legacy work to have a chance of being adopted.
This means not only that it should be technically compatible with legacy software, but
also the development process and development environment itself should already be
integrated into the legacy process and legacy development environment [Selic, 2003].

This is helpful to mitigating risk, to leverage previous significant work, and to ease
adoption of the approach by project partners and developers.

4.2.1. Requirements

The above objectives can be formulated as a number of concrete functional require-
ments (FR) and non-functional requirements (NFR) that the design process, the
resulting DSL development process and its software artifacts have to match. The
requirements are enumerated and referenced throughout this thesis to motivate and
discuss design decisions.

4.2.1.1. Functional Requirements

The functional requirements are mainly driven by the domain analysis.

FR1 Allow representation of motion primitives in terms of dynamical systems, which
is the main functional building block of the domain.

FR2 Allow adaptation of motion primitives through machine learning to allow for the
flexibility targeted by motion primitives.
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FR3 Allow combination of motion primitive in an architecture, as this allows testing
the main hypothesis of the domain.

FR4 Allow dependencies to proprioceptive feedback such as joint angles, joint veloc-
ities, joint acceleration, and joint torques, as well as Cartesian poses, velocities
and accelerations for reflexes and reaction to the unstructured environments.

FR5 Interface to higher cognitive layers and external perception, e.g., to receive goals.

4.2.1.2. Non-Functional Requirements

The non-functional requirements are largely driven by the research and project context.

NFR1 Use standards and open tools whenever possible and reasonable to increase
openness and foster reuse.

NFR2 Consider and respect developers bias, e.g., typical structure of systems and
software of the domain.

NFR3 Integrate existing software artifacts and development processes to leverage
legacy work and ease transition from classical development processes and en-
vironments.

NFR4 Allow iteration and constant refinement to keep up with new research results.

NFR5 Ease expressing of domain problems and solutions to support the domain expert
and help prevent errors.

NFR6 Allow formulation of motion primitive architectures in a technology-independent
and platform-neutral way so that they survive platform change and can be used
across different hardware and software platforms.

NFR7 Allow execution of systems on different platforms, i.e. robot platforms and
software platforms.

NFR8 Generate complete executable programs, so that the domain expert does not
have to learn GPL languages to experiment with motion primitives.

NFR9 Allow execution in simulation to decrease turn-around time of experimenta-
tion and to respect potentially high costs and effort of hardware experiments in
robotics.

4.3. Process
The objectives and requirements from the previous sections have to be considered for

the design process as a whole as well as for its several design steps and their resulting
artifacts, e.g., the resulting model-driven engineering process, software architecture,
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Figure 4.1.: Proposed iterative design process. Activities of the elaboration phase are
labeled with @; activities of the automation phase are labeled with @.

and toolchain. This section motivates the design process and explains its process
steps while pointing out the specific requirements that influence them. The proposed
design process, cf. Fig. 4.1, adapts patterns for software architecture development,
which seem to be suitable for use in the targeted inter-disciplinary motion primitive
architecture context (FR1).

Therefore, the proposed architectural process shown in Fig. 4.1 adapts Model Driven
Architecture (MDA) [ORMSC, 2001] based on the ideas of Volter [2005]. It aims
for early integration and involvement of important stakeholders and to establish an
approach to ground the conceptual ideas found in the domain analysis in a result-
ing architectural process, linking theoretical research on motor skills with software
engineering science and robot hardware, eventually resulting in executable and repro-
ducible robotics experiments. It uses DSLs to formalize the domain knowledge and
make it available for automation and creating of executable robotics systems.

The design process is iterative to account for the circumstances and needs of a
research project, where concepts change and evolve or have to be iteratively tested
in experiments (NFR4). The iteration starts with a Domain Analysis to extract the
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relevant abstractions, features, relations, and Requirements of the targeted domain.
This step is not explicit in [Vélter, 2005] but it is in the Model Driven Architecture
standard of the Object Management Group (OMG). The domain analysis for the mo-
tion primitive domain is already detailed in Chapter 3 and motivated most of the
requirements shown in Section 4.2.1. As a next step, based on the requirements and
results from the domain analysis, a technology-independent System Architecture is
created which focuses on the structure and responsibilities of the system parts. It
should therefore make implementation of the functional requirements as efficient as
possible (NFRS5).

To evaluate the technology-independent system architecture and therefore base the
ground for iteration of the design process, Volter [2005] defines two further steps in
the elaboration phase: creating the Programming Model and a Technology Mapping.
The programming model describes the API of the architecture, i.e. how it is used from
a developer’s perspective. Software abstractions and interfaces in the programming
model conform to the technology-independent system architecture. As a next step,
this programming model is implemented with concrete technologies, software plat-
forms and programming languages, i.e., mapped to an exemplary technology mapping.
This is intended for evaluation of the architecture and can be done in two ways. It
can be first evaluated on a Mock Platform, e.g., a robot simulator, for fast and easy
evaluation that spares the typically great effort of experimenting with hardware. As a
second important step when feedback of the first evaluation is already incorporated in
iterations of the process, the technology mapping is tested on a Vertical Prototype in-
cluding all aspects of the architecture [Vélter, 2005]. In robotics, this usually includes
testing on robotics hardware. Up to this point the activities belong to the elaboration
phase as defined by Vélter [2005], indicated with an ® in Fig. 4.1.

When the system architecture is evaluated, the automation phase starts, indicated
with an @ in Fig. 4.1. This process targets automation of software development
based on DSLs. Design of domain-specific languages is usually done “metamodel
first” [Volter, 2010}, i.e., first a schema is defined, then the editor and/or grammar is
added, and then the additional tool support like code generators are added. Therefore
as a first step, the technology-independent system architecture is formalized in a Meta-
model. The metamodel (or “architecture metamodel”) formally defines the concepts of
the system architecture to make it machine-readable and accessible for later automa-
tion. In the proposed process, the metamodel is realized as a set of DSLs, for which it
provides the abstract syntax. The DSLs add a concrete (textual or graphical) syntax
to make it accessible for programming and editor support. The DSLs use the natural
notation of the domain experts so that they are easy to write, read, and understand
by the domain expert, who is supposed to be supported by this automation.

Reality in the development of complex systems shows that different experts and
stakeholders develop their concerns with their respective tools and environment. The
language modularization, extension, and composition approach provides the possibility
to design different DSLs for specific concerns and their respective experts/stakeholders,
which can be specifically targeted to the respective concern (NFR5). At the same
time fosters reuse on a language level (NFR1) as discussed in Section 2.2.1.
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After the DSLs are created, both, the DSLs and the technology mapping are inte-
grated to provide a development environment that can support the developer through
automation, e.g., code generation by transforming the formal DSL models to the cho-
sen technology mapping. Once this is established, domain experts can formulate their
scientific hypothesis in a language that is natural to them and restricted to their prob-
lem domain. Domain-specific model validation and verification based on the formal
models can then prevent errors already during specification and code generation allows
generation of executable systems without domain experts needing to write GPL code.

4.4. Discussion

This chapter proposes a clear systematic design process for domain-specific languages
in robotics that is applied in the domain of motion primitive architectures. It is a first
contribution of this work to answer the research question RQ1, suggesting a method
to exploit and support the complex domain of motion primitive architectures by means
of model-driven engineering methods.

The MDA approach is standardized, well known, and well supported in several
domains outside robotics, and is therefore a strong candidate for applying model-
driven engineering in robotics. However, as this thesis aims at using domain-specific
languages as motivated in Section 2.2, the focus on Unified Modeling Language (UML)
introduces too strong restriction on their development and expressiveness.

The process proposed in this chapter conforms to existing patterns for software ar-
chitecture development [ORMSC, 2001, OMG, 2014, Vélter, 2005] and adapts them
to the motion primitive architecture research context according to the functional and
non-functional requirements discussed in this chapter. The iterative character, in-
spired by Volter [2005] addresses the research context (NFR4). Systematic design
of a metamodel and DSLs address eased and platform-independent formulation of
motion primitive architectures by domain experts (NFR6, NFR5). The proposed
code generation targets execution of these motion primitive architectures on different
platforms (NFR7) without the need of manual programming (NFRS).
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Chapter 5.

Technology-independent Architecture and
Metamodel

Following the approach proposed in Chapter 4, this chapter introduces a technology
independent architecture and metamodel that covers the domain introduced in Chap-
ter 3. The technology-independent architecture is intended to cover a domain, yet
be simple enough to be “explainable on a beer mat” [Vélter, 2005], i.e. to be reason-
ably simple to be understood by all stakeholders and developers. It should make it
possible to express the topic efficiently, independent of specific technologies and imple-
mentation strategies. It clearly defines the concepts, constraints, and relationships of
the architectural building blocks, which constitute the domain of adaptive rich motor
skills. The presented architectural metamodel is a product of this work. Its essential
concepts and respective consistent terminology are detailed in the following.

The metamodel is a conceptual model of the various entities, their attributes, roles,
and relationships, plus the constraints that govern the problem domain. It does not
describe solutions of the problem domain, but allows describing them. The metamodel
is basis for the DSLs discussed later in Chapter 6 and therefore basis for the domain
models that describe a domain application or solution, as discussed in Section 2.1. As
foreseen by the process introduced in Chapter 4, the concepts of the metamodel were
constantly validated and incrementally refined / extended by applying them in vertical
prototypes of the domain together with domain experts, e.g., practically involving
partners of the European research project AMARSI in testing and evaluation.

When designing a model it is important to know the motivations of the model, and
therefore which qualities or relationships are of particular use or should be reasoned
about. The model presented in this chapter has two main motivations: to make mo-
tion primitive explicit, and allow their easy composition into an architecture. The
architectural metamodel shown in Fig. 5.2 depicts the basic models of the domain
and its relations. Similar to several approaches discussed in Section 2.3, such as the
V3CMM approach [Alonso et al., 2010], it shows three viewpoints of the metamodel:
the static structural architectural aspects (black, solid), dynamical behavioral aspects
(yellow, dashed) and algorithmic models (green, dotted).

In the course of this chapter, these models are detailed and discussed along these
three viewpoints. Domain concepts and their instances are highlighted in typewriter
font. A running example is introduced and used in the course of this chapter to
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Example: Quadruped walking and foot placement

Running example comprising of the quadruped robot Oncilla [Sprowitz et al.,
2011] and the combination of a periodic motion primitive for walking as well as
a goal-directed motion primitive for foot placement, showing the combination
of motion primitives in an architecture to perform a motion skill.

Figure 5.1.: Quadruped robot Oncilla in simulation.

illustrate various — otherwise abstract — concepts.! The example comprises of the
Oncilla quadruped robot (Oncilla) [Sprowitz et al., 2011], shown in simulation in
Fig. 5.1, and the combination of a periodic motion primitive for walking as well as
a goal-directed motion primitive for foot placement (a quadruped robot’s version of
a reaching motion). The example is not meant to show the entire complexity of
the domain, but rather serve as a simplified example to ground the introduced, rather
abstract concepts, yet showing the combination of motion primitives in an architecture
to perform a motion skill. For more complex examples, see Chapter 10.

Concepts introduced in this chapter are linked to findings of the domain analysis
for better traceability.

5.1. Structural Models

The architectural building block proposed in this work to represent a motion primitive
as a combination of dynamical systems and machine learning for adaptation is termed
Adaptive Module. They resemble computational building blocks to generate primitive,
combinable motions that can generalize to new situations or environments and are
robust to perturbations. The main concept of Adaptive Modules is accompanied by
further structural concepts to organize and combine them in an architecture. Indicated
in black with solid lines in Fig. 5.2, they form the main abstractions to express static
aspects of motion primitive based architectures. The following section details these
concepts, their properties, and relations.

! Running example in the sense that this example is used throughout this and the following chapters.
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of the motion primitive architecture and its three separate architectural
concerns: structural (solid), behavioral (dashed), and algorithmic (dot-

ted).
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Example: Spaces and Space Types

In the running example introduced above, two Space Types are defined: i)
Leg Joints, a 2-dimensional Joint Angles space that represents joint angles
of a single Oncilla leg, and ii) Foot Position, a 3-dimensional task-space of
Translation type to represent the 3-dimensional Cartesian position of a single
Oncilla foot. For each leg, the example defines four spaces of each of these two
Space Types, the status and command of the leg joints of Leg Joints type, as
well as the status and command of the foot of Foot Position type. Fig. 5.3
shows exemplary Space Type and Space instanced of the running example.

LeftForeLegStatus : Space

Legjoints : SpaceType |

JointAngles : DataType
dimension = 2 I

’ LeftForeFootStatus : Space
LeftForeLegCommand : Space

FootPosition : SpaceType | Translation : DataType

dimension = 3

LeftForeFootCommand : Space

Figure 5.3.: Object diagram of Spaces, Space Types, and Data Types in the
running example.

5.1.1. Spaces and Space Types

The concept of Spaces abstracts the communication between system components of
the motion primitive architecture. It is defined as a number of explicit variables
that appear to be jointly manipulated or sensed somewhere in the motion control
architecture, e.g., joint angles of a certain robot limb. This usually occurs on all levels
of an architecture, but is often very implicitly defined by the functional architecture,
as observed in the domain analysis.

Spaces are determined by their Space Type, which consists of a Data Type and
a Dimension. The base Data Types of Spaces are the ones found in the domain
analysis, such as Joint Angles, Impedance, or end-effector Pose. The domain analysis,
especially the control feature models (cf. Section B.1.1) and the input and output
specification of the adaptive modules survey (cf. Section B.2), showed that one cannot
assume a fixed, limited and a-priori known set of Spaces and Space Types. Instead,
their explicit specification depending on chosen application and chosen robot platform
needs to be facilitated.
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Mapping <+—— Generalization
" . . q ] Coordinate
Forward Kinematics Inverse Kinematics Transformation K— Transformation

Figure 5.4.: Specializations of Mappings and Transformations.

Spaces can describe status values as well as target values and setpoints. In addition
to the status and measurements of the robot itself, they can encompass values of the
external, perceived world and setpoints generated by a higher cognitive layer. They
therefore address the functional requirements of i) allowing interfacing with higher
cognitive layers and external perception (FRS5) and ii) making dependencies to pro-
prioceptive feedback, e.g., for reflexes and reaction to the environment, explicit (FR4).
Since they make this dependency explicit, they additionally help with decoupling ex-
periments and methods from robot platforms (NFR6, NFRT7), as they represent
defined semantic interfaces between them.

Making Spaces explicit also helps dealing with their technical constraints in an ex-
plicit manner. For instance, resource management and arbitration, or data with dis-
tinct update rates that need to be temporally aligned first through, e.g., sub-sampling
or temporal interpolation.

5.1.2. Mappings and Transformations

In the motor control domain, forward and inverse models are commonly used for the
mapping between Spaces, e.g., task and joint variables. These models are represented
by Mappings and Transformation: Mappings map data between Spaces of differ-
ent Space Type, Transformations transform data between Spaces of the same Space
Type, see Fig. 5.4. Typical Mappings found in the domain are Forward Kinematics
and Inverse Kinematics, found in the domain analysis as well as in the running ex-
ample. Typical Space Types are coordinate transformations between, e.g., coordinate
systems of different sensors or different robots.

How such Mappings and Transformations are exactly implemented is not impor-
tant in order to identify the crucial role of forward and inverse models in a motion
architecture. In fact, Mappings and Transformations themselves may be implemented
or learned. Note, that Mappings and Transformations are currently treated as black
boxes regarding their implementation. However, this is a potential extension point for
more detailed modeling efforts, e.g., work by Laet et al. [2012b,a], which is already
prototypically implemented as DSL, detailed by Laet et al. [2012c].

If they are not implemented or explicitly modeled, every two Spaces of a system can
be investigated if a forward and inverse model exists and can be learned. The concept
of an Adaptive Mapping or Transition that can be learned is termed Adaptive Map-
ping and has input and output semantics for learning similar to the Adaptive Mod-
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Chapter 5. Technology-independent Architecture and Metamodel

Example: Mappings and Transformations

The running example requires an inverse kinematics Mapping, to map between
the Foot Position commands and the Leg Joints space for commands sent to
the robot.

: Inverse Kinematics

LeftForeFootCommand : Space LeftForeLegCommand : Space

Figure 5.5.: Object diagram of Inverse Kinematics Mapping between Foot Po-
sition commands and the respective Leg Joints commands.

ule. An example from the domain analysis for this concept is the learned redundancy
resolution by Wrede et al. [2013], Emmerich et al. [2013], Nordmann et al. [2012a].

5.1.3. Adaptive Modules

An Adaptive Module is the main functional building block of the motion control
architecture and represents a motion primitive. The domain analysis showed that
an Adaptive Module consists of one or more Dynamical Systems together with its
relevant input and output Spaces and a machine learning mechanism for adaption.
An Adaptive Module contains one or more Dynamical Systems, which generate the
output dynamics and can have periodic or non-periodic (goal-directed) dynamics.

To allow adaptation to new situations, new environments and additional learning
input, Adaptive Modules optionally contain one or more Learners that adapt the
Dynamical Systems. A common case for adaptation is to shape the dynamics as done
with kinesthetic teaching in the catching [Shukla and Billard, 2011] and upper body
control [Reinhart and Steil, 2012] examples. A classic example that can be described
with the concept of an Adaptive Module is the Dynamical Movement Primitive (DMP)
as introduced in Chapter 3, such as the gait pattern generators and reflexes used for
the quadruped walking [Ajallooeian et al., 2013]. The distinction between Dynamical
Systems and the adaptation mechanism, the Learner, is in most examples too fine-
grained as most of the mechanisms found in the domain analysis generically include
adaptation mechanisms. However, the distinction is nevertheless useful in cases where
a Dynamical System comes without an adaptation mechanism, e.g., is given by a
fixed expression, or is already pre-trained.

Also along the findings of the domain analysis and survey (cf. Section B.2), the
Adaptive Module concept defines a set of dedicated Inputs, e.g., to receive goals
during execution and sensor values, Inputs for configuration as well as Inputs for
learning data. It also defines Outputs for its control output and status, see Fig. 5.6.

The Adaptive Module concept has a specific lifecycle with different states, cf.
Fig. 5.7, e.g., for execution, online and offline learning. The distinction between on-
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Adaptive Module

goal control
feedback status

ds : Dynamical System[1..*]
config
speed learn : Learner[0..*]
phase
train p : Property[0..*]
statein

Figure 5.6.: Composite structure diagram of an Adaptive Module with dedicated In-
puts/Outputs, Dynamical Systems, Learners, and Properties.

line learning and offline learning is especially relevant from an architectural viewpoint.
Both cases need to be treated differently, since responsiveness and execution of the
Adaptive Module might differ in the online learning case and the offline learning
case. While an Adaptive Module might be able to perform a movement during on-
line learning, in the offline learning case further parts of the architecture may need to
collect feedback first, parts of the system may have to be frozen, and the Adaptive
Module might be unresponsive during learning. It is therefore useful to distinguish
online learning and offline learning on the conceptual level, while the designers of a
concrete Adaptive Module still needs large freedom to implement different adaptation
and learning schemes that shall not be strongly restricted.

The distinction between the different lifecycle states of the Adaptive Module is
therefore reflected in the Adaptive Module Status.

Adaptive Module Status The Adaptive Module Status makes the status of an
Adaptive Module visible to surrounding system and coordinating levels. It is a Data
Type so that it can be used to specify a certain Space Type as well as respective
Spaces and can have one of the following three values:

1. executing: The Adaptive Module is not learning, but executing a movement
or ready for execution,

2. online learning: The Learner is training the Dynamical System(s) in online
learning mode, allowing the Adaptive Module to be executed in parallel, or

3. offline learning: The Learner is training the Dynamical System(s) in offline
learning mode and the Adaptive Module is currently not available to perform a
movement.

Dynamical System Status Similar to the Adaptive Module itself, the Dynamical
System concept has an internal status that allows the Adaptive Module to behave
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Figure 5.7.: Adaptive Modules lifecycle; the Adaptive Module can be initialized,
stopped, and switched between execution, online learning, and offline
learning.

based on the state of its contained Dynamical Systems. The domain analysis showed
primarily three different states, which provide a clue to the Adaptive Module on the
state of its movement:

1. transient: the Dynamical System is potentially in untrained regions and there-
fore uncertain whether it is converging and producing intended or meaningful
output.

2. converging: the Dynamical System is potentially in a trained region, ap-
proaches its desired behavior in a controlled way, but did not reach its goal
or attractor yet.

3. reached: the Dynamical System is in its desired behavior, i.e., it reached its
goal, is following its attractor state, or is stably producing its intended pattern.

5.1.4. Adaptive Components

The domain analysis revealed that Adaptive Modules come with a limited set of
architectural structures in their vicinity that determine the semantics of the Adap-
tive Modules and the represented motion primitives. This finding yielded the concept
of Adaptive Components that allows a compact description of these architectural
structures. It is defined as an Adaptive Module together with its input and output
Spaces and the control logic inside the component. It provides the logical structure
around an Adaptive Module, connecting it with the entire system in its different
lifecycle states, e.g., learning and execution.
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Example: Adaptive Module

The pattern for walking of the quadruped robot is generated by a contained
periodic Dynamical System.

This specific Adaptive Module does not have any goal or feedback Input, but
only configuration Inputs for its frequency and phase property, as well as the
lifecycle. It has Outputs to generate joint angles that perform the walking
pattern with the robot and to report its current Adaptive Module Status.
The frequency property of the Adaptive Module changes the frequency of the
walking pattern, which should be close to the natural frequencies of the compli-
ant robot and its limbs to produce a forward movement. The phase Input adds
an offset to the phase to allow it to start and continue at different points in the
stance/swing phase.

Oncilla Walking

% control
feedback ds : Walking Dynamics[1] status
speed
phase
tram p : Property[2]
tatel

Figure 5.8.: Composite structure diagram of the Adaptive Module in the run-
ning example for generating the walking dynamics.

Additionally, Adaptive Components can be configured to have Mappings or Trans-
formations on the goal Input, feedback Input or control Output of the Adaptive Mod-
ule. This allows integrating Adaptive Module into different systems and platforms by
configuring their containing Adaptive Components accordingly, if they were otherwise
incompatible Spaces. An Adaptive Module operating in joint space can for example
be integrated in a system where the goal is generated in task space by adding the
according inverse kinematics Mapping, as it is shown in the running example. It is
thereby a further answer to the challenge of executing motion primitive experiments to
different robot platforms (NFRT), as the concept of Adaptive Components explicitly
allow integrating Adaptive Modules in different contexts by adapting the surrounding
Adaptive Component without having to change the Adaptive Module.

Adaptive Components can optionally specify a Criterion that monitors convergence
of the motion, detailed in the course of this section. Four specialized subtypes of Adap-
tive Components were identified during the domain analysis as shown in Fig. 5.9:

e Reaching Controllers for goal directed movements get targets and converge
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Adaptive Component <+—— Generalization

Reaching Controller Tracking Controller Pattern Generator Sequencer

Figure 5.9.: Specializations of the Adaptive Component concept.

towards this target. It has a Criterion that analyses the reaching progress based
on feedback and determines the Adaptive Component Status.

e Tracking Controllers converge towards a reference trajectory or a cyclic at-
tractor. The convergence dynamics to the target trajectory is a mixture of the
Adaptive Module’s dynamics and the input dynamics. Similar to the Reaching
Controller it has a Criterion that analyses its convergence based on feedback
and determines the Adaptive Component Status. An example of a Tracking
Controller is the mixture of controllers example by Waegeman et al. [2013].

e Pattern Generators output a pattern and are not necessarily driven by a target
or other input. An example of a Pattern Generator is given in the the mixture
of controllers example by Waegeman et al. [2013].

e Sequencers can be understood as special case of Pattern Generators with con-
ditioned iteration of a Dynamical System. It can be based on the Adaptive
Component Status of other Adaptive Components, e.g., to wait for the final-
ization of sequences of a motion.

5.1.5. Criterion and Adaptive Component Status

If an Adaptive Component contains a Criterion, it can report its status similar to
Adaptive Modules and Dynamical Systems. The semantics of the Adaptive Com-
ponent Status relate to the status of the actual motion and can be in task space or
configuration space. The concept of the Criterion is similar to the exit conditions
formulated for the manipulation primitives in [Kroger et al., 2004]. The Adaptive
Component Status reported by a Criterion is:

1. not converged: the motion is not finished yet, the task space or joint space
parameters are outside the threshold given by the Criterion. This happens for
example when the status of the contained Adaptive Module is “transient” or
“converging” .

2. converged: the motion is finished, the task space or joint space parameters are
within the threshold given by the Criterion. This is often similar to the contained
Adaptive Module being in its reached status, but can differ depending on the
actual Criterion.
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Example: Reaching Controller

The Reaching Controller to control the placement of the left fore foot consists
of an Adaptive Module and a Criterion to check for convergence. The Adap-
tive Module operates in the joint space, yet, goals are provided as task space
positions. Therefore the Reaching Controller requires an Inverse Kinematics
Mapping to connect the Adaptive Module to its architectural context.

The Criterion also operates in the joint space, which requires the same Mapping.
In the concrete example, the Criterion has properties determining the threshold
on the Joint Angles determining when the motion is considered converged.

Reaching Controller

feedback [}
Oncilla Walking ] control
goal Forward Kinematics
Joint Space Criterion

Figure 5.10.: Internal block diagram of the Reaching Controller to control the
placement of the left fore foot.

—— [ ] status

5.2. Behavioral Models

Expressing the domain examples in the presented concepts is a first qualitative eval-
uation and shows that the concepts are indeed capable to cover the functional variety
of the surveyed motion architectures regarding their structural aspects [Nordmann
et al., 2015]. Nordmann et al. [2015] discuss, however, that behavioral aspects are
often missing in the system representations surveyed in the domain analysis. There,
behavior is largely not explicitly represented, but often hidden in the source code
of sequencing components. Behavioral aspects, however, are equally important and
necessary to specify the coordination and combination of different motion primitives
(FR3) and therefore to formalize entire motion primitive architectures and generate
entire executable experiments.

This section therefore introduces further models dedicated to system-level coordi-
nation [Biggs et al., 2010], which is already covered by several well-known models and
languages [Nordmann et al., 2014]. Widely used in robotics, are models based on Harel
state charts [Harel and Politi, 1998], such as the UML Statechart [OMG, 2010] and
the State Chart XML (SCXML) [Barnett et al., 2013] from the World Wide Web Con-
sortium (W3C). These models incorporate Harel’s notions of hierarchical and parallel
states and are thus suitable for general-purpose state machines. Since a large corpus of
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Figure 5.11.: Metamodel, focused on the behavioral aspects for system-level coordina-
tion. The metamodel shows the concepts of the behavioral model (black)
and their relations to concepts of the structural model (gray).

work exists for these models, they serve as a base for the behavioral model introduced
in this work and are extended by domain-specific (motion primitive-specific) extensions
to express the variety of behaviors covered by the domain analysis, cf. Fig. 5.11.

The top-level abstraction of the Harel state chart and therefore basis for the be-
havioral model in this work is the State Machine (sometimes also “state chart”). It
contains a number of States and the transitions between them as well as an initial
State that is transitioned to when starting the State Machine. States define entry
and exit Actions and a set of Transitions to other States that define how it reacts to
events. Special cases of States are Parallel States and Composite States. Parallel
States encapsulate a set of child states, which are simultaneously active when the par-
ent element is active. Composite States contain further substates and, like the State
Machine, have an initial State that is transitioned to at when entering the Compos-
ite State. Transitions are triggered by events and can be conditionalized via guard
Conditions. They may contain Actions, which are executed when the transition is
taken. The Condition defines weather or not a certain Transition to another State is
followed. For a more detailed and complete description of the models please refer to
[Harel and Politi, 1998, Barnett et al., 2013, OMG, 2010].

Although the state chart model serves as a good and well-known basis for the behav-
ioral model of the targeted domain, further motion primitive extensions and models
are introduced in the following to express the variety of behaviors covered by our
domain analysis.

5.2.1. Actions

Actions define what is happening inside a state. This is a first domain-specific exten-
sion point to the rather generic state chart concepts. Apart from generic actions like
log messages, domain-specific actions like changing the lifecycle state of an Adaptive
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Dynamical
System

Expression

1.*% €—— Containment

Figure 5.12.: Metamodel, focused on the algorithmic aspects.

Module or triggering execution of a motion primitive.

Another required Action is to provide data for a certain Space, which can be used
for example to provide goals for a motion primitive (resp. its corresponding Adaptive
Module.

5.2.2. Conditions

The domain analysis revealed several motion-specific synchronization mechanisms to
trigger composition and sequencing of motion primitives: The Adaptive Component
Status introduced in Section 5.1.5 represents the status of the performed movement: i)
converged: The reference of the movement is reached (in case of a goal-directed move-
ment) or tracked (in case of a periodic movement) and ii) not converged: Movement
is still ongoing.

A further domain-specific condition is based on the robot and especially relevant in
the human-robot interaction and programming-by-demonstration (PbD) examples, cf.
[Nordmann et al., 2012a] It allows system coordination based on the movement and
learning states of motion primitives, as well as triggering the execution of motions and
learning steps.

Coordination between the state machine and components, often hidden in code,
implemented as state machine events and event-handlers, is now explicit in the DSL
specification.

5.3. Algorithmic Models

The concepts to model the algorithmic part of the targeted domain are based on Dyna-
mical Systems as motivated in Chapter 3. Dynamical Systems are based on a strict
and well-defined mathematical framework and can be expressed by a mathematical
expression as depicted in Fig. 5.12.

Fig. 5.13 details further how these Expressions look like. Expressions can be unary
or binary. Examples for Unary Operators are Parentheses, Negation or trigonometric
functions. Examples for Binary Operators are Addition, Subtraction, Multiplica-
tion, Division, and Exponentiation. An Expression can also be an Assignment that
assigns the result of an expression to a Variable.

To be usable within the overall framework, possible Variables of the Expressions
are the Inputs and Outputs of the surrounding Adaptive Module with the restriction
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that only Outputs, not Inputs, can be the left side of an Assignment. Fig. 5.14
shows an example expression from a Dynamical System of the running example that
calculates the Output of an Adaptive Module based on a calculation with its Inputs.

Expression

‘ <+ Generalization

T T

Constant Operator Variable Assignment
Unary Binary
Operator Operator Output Input

Figure 5.13.: Specializations of the Expression concept.

5.4. Discussion

Atkinson and Tunjic [2014] argue that there is a “growing consensus on the need
to move to comprehensive, view-based approaches” to cover the different aspects of
complex systems. The number of viewpoints should be minimal and viewpoints should
be orthogonal [Atkinson and Tunjic, 2014]. The introduced metamodel comprises
models to describe motion primitive architectures from three orthogonal viewpoints:
The structural models revolve around the main concept of Adaptive Modules that
represent motion primitives. The behavioral models use the widely used state chart
model as a base and add further motion primitive specific extensions to allow easy
specification of certain common actions and synchronization mechanisms found in
the domain. The algorithmic models are based on mathematical Expressions and
Operators and therefore open up to their full expressiveness. The algorithmic model
references Inputs and Outputs of Adaptive Modules to integrate with the overall
motion primitive architecture. The choice of the three viewpoints is conforming to the
state of the art and other approaches in the field, e.g., V2CMM [Alonso et al., 2010]
where this partitioning is quite explicit. The different views have only minimal overlap
in conformance with Atkinson and Tunjic [2014] as they describe different concerns of
the same system.

The models introduced in this chapter are largely platform independent models
(PIMs) to allow formulation of motion primitive architectures independent from a tar-
get technology (NFR6). Targeting these models to executable artifacts is introduced
in Chapter 6 and Chapter 8.

The functional models introduced in this chapter address several of the requirements
formulated in Section 4.2. The abstractions of Adaptive Module with its specific
lifecycle, inputs, outputs, and status make the representation of motion primitives with
its learning and execution phases explicit and compact (FR1, FR2). The behavioral
models, especially with their domain-specific extensions allow dynamic coordination
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and combination of motion primitives (FR3). The introduced concepts of Spaces and
Mappings allow explicit formulation of dependencies to external perception (FR4)
and higher cognitive layers (FR5). The concept of Adaptive Components with the
potential input and output Mappings allows connecting these even when their Space
Types are not agreeing, under the condition that forward and/or inverse Mappings
exist.
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Example: Reaching Dynamics

A simple Dynamical System from the running example expresses the dynamics
of the leg joints to reach a certain goal in the joint space. Simple exemplary
dynamics that move the joint angles from its current position 10% of the distance
to its goal configuration could be written with the equation x; = x;_1 + 0.1 %
(9 — x¢—1), with x4 being the current state, x;_; the previous state and g being
the goal configuration.

Fig. 5.14 shows how this equation translates to the introduced algorithmic model
in the form of a tree of expressions. A Constant, an Assignment, and several
Unary Operators and Binary Operators express the above formula. The new
state x; is assigned to the Adaptive Module’s control Output “ctrl”, the previ-
ous state x;_1 is read from the Adaptive Module’s feedback Input “fdb”, and
the goal configuration g is read from the Adaptive Module’s goal Input “goal”.
Note, how the Adaptive Module operating in joint space can be used, even when
the foot goal is (typically) given in task space coordinates, by simple adding an
Inverse Kinematics Mapping to the goal Input in the surrounding Reaching
Controller, as exemplified later.

Leg Dynamics : Expression

: Assignment
ctrl : Output : Addition
fdb : Input : Multiplication
: Constant : Paranthesis
value = 0.1

: Subtraction

goal : Input

fdb : Input

Figure 5.14.: Object diagram of the expression ctrl = fdb+ 0.1 x (goal — fdb)
to express the leg dynamics in the running example.
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Language Modularization and Design

“Beware of the Turing tarpit in which everything is possible but nothing
of interest is easy.”
— Alan J. Perlis

While the models introduced in Chapter 5 provide a clear semantic framework to
specify motion primitive architectures, they need a concrete, e.g., textual or graphical,
syntax to be accessible for a developer. Apart from practical consideration, this is
a valuable process since “the process of defining the language actually helps the ar-
chitecture/development team to better understand, clarify, and refine the architectural
abstractions, as the language serves as a (formalized) ubiquitous language that lets you
reason about and discuss the architecture.” [Volter et al., 2013]

This chapter details modularization and design of the domain-specific languages
(DSLs) for the introduced metamodel. A formal DSL design consists of a specification
written using a semantic definition method. The most widely used formal notations
for several years include regular expressions and grammars for syntax specifications,
and attribute grammars, rewrite systems, and abstract state machines for semantic
specification [Mernik et al., 2005]. In recent years, however, a class of powerful tools
became available that allow convenient definition, reuse and composition of DSLs to-
gether with their integrated development environments (IDEs). This class of tools is
called language workbench, a term introduced by Fowler [2005], and is used in this
work. A language workbench explicitly subscribing to the idea of language modu-
larization, extension, and composition (LMEC) as targeted by this work is Jetbrains
Meta-Programming System (MPS) [Jetbrains.com, 2003] that was used for modular-
ization and design of the DSLs introduced in this chapter.

Following the idea of LMEC, the metamodel is decomposed into a set of DSLs
with the different concerns of the motion primitive architecture domain realized as a
separate DSL. The DSLs are composed with the composition methods introduced in
Section 2.2.1.

Section 6.1 further introduces the concept of language workbenches, and discusses
the tool of choice in this work, MPS, since it not only provides the meta-metamodel
(M3) for the metamodel and DSLs of this work, but also has influence on the design
of the languages and the toolchain discussed in the course of this thesis. Section 6.2
introduces the concrete language modularization of the introduced metamodel with
different modularization and composition methods. Section 6.3 provides an overview
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on design dimensions of DSLs, e.g., their concrete syntax and constraints, and dis-
cusses the concrete design of the modularized languages introduced in Section 6.3.
Section 6.4 shows the model-to-model transformations (M2Ms) between the modu-
larized languages to map the motion primitive architecture models to more platform
specific models (PSMs).

6.1. Language Workbenches

“Language workbench” is a term introduced and popularized by Fowler [2005]. It
describes a class of software development tools designed to define, reuse, and compose
domain-specific languages together with their integrated development environment.
Language workbenches therefore follow the idea of language-oriented programming
and usually support concerted specification of the metamodel, editing environments for
the DSL, and its execution semantics, e.g. through interpretation and code generation.

Several language workbenches have been developed over the last years, such as
MetaEdit+ [Tolvanen and Rossi, 2003], Monticore [Krahn et al., 2001], Jetbrains Meta-
Programming System [Jetbrains.com, 2003], and Spoofax [Kats and Visser, 2010]. One
of the most popular language workbenches is Eclipse EMF Xtext (Xtext) [Bettini,
2013], which has a large community and is accompanied by a wide range of tools
for textual and graphical editors, transformations, code generation and visualization
under the umbrella of the Eclipse Modeling Project (EMP). EMP is well adopted in
the robotics DSL community and its tools, e.g. Xtext, are used by most of the robotics
DSL approaches surveyed by Nordmann et al. [2014].

The language workbench that is used for development of the motion primitive DSLs
in this work is Jetbrains Meta-Programming System [Jetbrains.com, 2003]. It has
strong support for composable language definition, DSLs can be extended and embed-
ded, which supports the LMEC approach motivated in the design process proposed in
Chapter 4. MPS solves potential grammar ambiguity issues by working with a projec-
tional editing approach. This means that the main definition of a system is held in a
model, not in source code, and it is edited through textual or graphical projections of
this model, as shown in Fig. 6.1. Classical parser-based approaches treat the language
code as the primary artifact and the abstract syntax tree (AST) is created by parsing
the language code. When working with projectional editing, the AST is directly ma-
nipulated, and only its text-like or graphical projection is only used for looking at the
AST. For projectional editors it is relatively easy to define several notations for the
same language concept by changing the projection rules. Therefore, different notation
for different concerns can be used for different stakeholders [Volter et al., 2013].

In addition to its support for LMEC and projectional editing, its wide support for
different well-integrated language design aspects was a reason to choose MPS for this
work.
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editing viewing editing viewing
concrete syntax concrete syntax

A

abstract syntax ~ abstract syntax
tree tree
Parsing Projection

Figure 6.1.: Classical parser-based approach (left) and projectional editing (right). In
the parser-based approach, the user interacts only with the concrete syn-
tax. In projectional editing, the user manipulates the AST directly and
observes its projection [Volter et al., 2013].

6.2. Language Modularization

The three main concerns/viewpoints of the domain are structural, behavioral and al-
gorithmic, as introduced and discussed in Chapter 5. This is therefore a natural way
of decomposing the metamodel into languages. However, an important motivation for
LMEC is to foster reuse of the languages, which is one of the non-functional require-
ment for this work (NFR1). Not to jeopardize composability and potential reuse of
the languages, a composition approach is necessary that does not introduce unnec-
essary dependencies between these languages, i.e. languages of the different concerns
should be reusable independent of the other concerns.

Fig. 6.2 shows how the metamodel proposed in Chapter 5 is decomposed into mainly
five DSLs developed in this work, and an additional DSL for Data Types.

Motion Primitive DSL The Motion Primitive DSL is the main DSL to express the
structural aspects of motion primitive architectures. It is a textual DSL and comprises
most of the concepts defined in Section 5.1. It is therefore an architecture DSL (ADSL)
in the terms that it “expresses a system’s architecture directly. Directly means that the
language’s abstract syntax contains constructs for all the ingredients of the conceptual
architecture. The language can hence be used to describe a system on the architec-
tural level without using low-level implementation code, but still in an unambiguous
way.” [Volter et al., 2013] This is true for the structural aspects of the architecture.
The main functional aspects expressed with Motion Primitive DSL are motion prim-
itive and the necessary Spaces to connect them with each other, to external perception,
to external higher cognitive layers and to the robot. The Motion Primitive DSL

65



Chapter 6. Language Modularization and Design

algorithmic structural coordination

Dynamical System

extends

Middleware

reference;\

Figure 6.2.: The language modularization proposed in this work and their dependen-
cies.

is supposed to be technology and platform independent; therefore, all platform and
technology dependent features are omitted in this language.

Dynamical System DSL The Dynamical System DSL constitutes the “business logic
DSL” [Vélter et al., 2013] and encompasses the algorithmic models, i.e. Dynamical
Systems. It introduces one new Dynamical System concept that specialized the orig-
inal Dynamical System and contains a single Assignment Expression in conformance
with the algorithmic model discussed in Section 5.3, as well as validation and type
system rules for convenient integration.

Component DSL The Component DSL describes structural aspects of component-
based software engineering (CBSE), namely Components, Ports, Classes, and Meth-
ods. It therefore models the software architectural aspects of a CBSE system and
allows arbitrary computational content inside the components. The core metamodel
of the language conforms to the main abstractions of common architecture description
languages (ADLs) as discussed in Section 3.3.1. The main concepts of the Component
DSL are depicted in Fig. 6.3.

Ports of Components are strongly typed and communicate with each other when
Output Port and Input Port use the same Scope, an identifier for a common commu-
nication channel. InputPorts of the components can be configured in terms of their
input buffer size and buffering strategy, e.g., to keep always the latest received item
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Component €—— Containment

/' ‘\ Generalization

Input Port Output Port Lifecycle Processing Strategy
Port Timed Processing Input-Based Processing

Figure 6.3.: Metamodel of the Component DSL, focused on the Component.

buffered.

So-called Processing Strategies allow specifying input-based or timing-based acti-
vation semantics of the Components to model the different dynamic execution and
interaction behaviors found in the domain analysis.

Middleware DSL The Middleware DSL describes structural aspects of systems in
terms of middleware concepts, more precisely systems based on the event-based mid-
dleware Robotics Service Bus (RSB), that organizes the communication of system
parts via publish/subscribe and remote procedure calls (RPCs) [Wienke and Wrede,
2011]. The main concepts of the Middleware DSL are Processes, bus Participants and
its specializations, Publisher and Listener as well as RPC Server and RPC methods.

Coordination DSL The Coordination DSL covers the behavioral aspects of the mo-
tion primitive architecture metamodel, coordination of the motion primitives. The
main structural element of the language, and its root concept, is the State Machine
that is a container for all the States, Actions, and Transitions that define the system-
level behavior.

Primitive Coordination DSL The pure Coordination DSL does not simplify spec-
ification of behavioral motion primitive architecture aspects for the domain user or
raise the expressiveness compared to general purpose modeling languages. For this
reason, Primitive Coordination DSL is introduced that extends the Coordination DSL
by domain-specific coordination aspects introduced in Section 5.2.

The Primitive Coordination DSL extends the Coordination DSL by several mo-
tion primitive specific Actions and Conditions. Motion primitive specific Actions
are primarily ChangeState, to change the state of an Adaptive Module, and Pub-
lishToSpace, to publish a certain data item to a Space, e.g., to provide a goal for a
movement. Motion primitive specific Conditions added with the Primitive Coordi-
nation DSL are primarily StateChanged to react to lifecycle change of a Adaptive
Module, ConvergedCondition to react to a Adaptive Component being converged,
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and RobotAffected to react to the robot being touched, e.g., in a physical human-robot
interaction (pHRI) scenario.

Types DSL The Types DSL provides a collection of over 150 Data Types that are
typically found in robotics systems, e.g., Joint Angles, Joint Torques, Pose, Trans-
lation, Rotation, and Forces. Its types are originally based on the domain analysis
discussed in Section 3.3, taking input especially from the control feature models (cf.
Section B.1.1) as well as the input and output specification of the adaptive modules
survey (cf. Section B.2).

6.2.1. Language Composition

Integrating the motion primitive specific coordination aspects introduced in Section 5.2
into the Coordination DSL would mean referencing the Motion Primitive DSL (in
terms of Section 2.2.1), therefore imposing a direct dependency which hinders easy
reuse and thus does not comply with NFR1. Instead, Coordination DSL reuses Mo-
tion Primitive DSL (in terms of Section 2.2.1) for which an adapter language Primitive
Coordination DSL is introduced.

To allow this it extends the Coordination DSL and references the Motion Primitive
DSL, see Fig. 6.4. A State Machine with motion primitive extensions is expressed
as a State Machine and an Adaptive Module Circuit. State Machines and Adap-
tive Module Circuits are expressed with the two different languages Coordination
DSL and Motion Primitive DSL respectively. The referencing Primitive Coordina-
tion DSL depends on the referenced Coordination DSL and Motion Primitive DSL
because concepts in the Primitive Coordination DSL references extend concepts from
the Coordination DSL and reference concepts from the Motion Primitive DSL. In this
case, Primitive Coordination DSL is the referencing language, and Coordination DSL
and Motion Primitive DSL are the referenced languages. In this case, Primitive Co-
ordination DSL serves as an adapter language for language reuse in terms of Volter
et al. [2013] as it allows using the independent languages Coordination DSL and Motion
Primitive DSL to be used together without introducing an explicit dependency between
them. This also allows both languages to be used alone as well as in different contexts.

Similarly, the Component Coordination DSL provides extensions to the Coordina-
tion DSL to coordinate systems modeled with the Component DSL and the Middleware
Coordination DSL provides extensions to the Coordination DSL that integrate with
the Middleware DSL.

Coordination DSL

? extends

Primitive references
Coordination DSL

> Motion Primitive DSL

Figure 6.4.: Language composition of the Primitive Coordination DSL.
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All of these languages need to be combined with the Coordination DSL to be able
to express the behavioral aspects of motion primitive architectures as proposed in
Chapter 5. The Coordination DSL encompasses the behavioral models, i.e. State Ma-
chines. However, State Machines are a rather generic and widely used concept, also
useful outside the motion primitive domain. This section exemplifies the language
modularization, extension, and composition proposed in this work for some of the
involved languages.

The Dynamical System DSL in its current implementation extends the Motion Prim-
itive DSL, introducing a specialization of the Dynamical System concept. This cur-
rently makes the Dynamical System DSL not usable independent of the Motion Prim-
itive DSL. This could easily be changed, though, with the language modularization
concepts discussed in Section 2.2.1.

The Motion Primitive DSL has a dependency to the Types DSL so that all its Data
Types can be used for specification of the Space Types. The Component DSL and
the Middleware DSL also have a dependency to the Types DSL for specification of
their Port types and Participant types respectively.

A further means of language composition is annotations, which technically provide
a separate viewpoint, which are often used for technical or transformation control-
ling aspects and can be added to the model by different stakeholders. In this work,
the Component DSL and Middleware DSL provide annotations for platform-specific
aspects. These annotations are used in the code generation, discussed during transfor-
mations, detailed in Section 6.4. They provide hints for the code generators regarding
the mapping of the specified motion primitive architecture to a certain platform, as
exemplified in Section 9.1.2.

With this modularization, different concerns of motion primitive architectures are
separated in a way that generic concerns can be used without introducing depen-
dencies to motion primitive language and aspects, e.g., outside the motion primitive
domain. By using the adapter languages, generic languages and motion primitive spe-
cific languages can be integrated to realize the domain-specific models and aspects of
the metamodel specified in Chapter 5.

6.3. Language Design

Fig. 6.5 shows language design aspects that are supported by MPS to specify a DSL.
The structure aspect defines the abstract syntax of the language with its concepts,
properties, and relations. This corresponds to the metamodel. The editor aspect adds
a concrete, e.g., textual or graphical, syntax to the language by defining the projection
rules for the elements specified in the language structure aspect. The type system and
constraint aspect define the static semantics of the language by means of scoping,
value restrictions, typing rules and type checks. Finally, the transformations aspect
defines the execution semantics of the language through model-to-model transforma-
tions (M2Ms) and model-to-text transformations (M2Ts). Each of these aspects is
specified in MPS by dedicated, built-in DSLs, such as the Structure Language, the
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Figure 6.5.: Language design aspects in MPS [Vdlter et al., 2014].

Typesystem Language, etc.

After modularization of the metamodel into DSLs the abstract syntax provided by
the metamodel, resp. the MPS language structure, has to be extended by a concrete
syntax. Karsai et al. [2009], Mernik et al. [2005], Volter et al. [2013], Nguyen et al.
[2014] distinguish the following essential design dimensions of DSL development, which
are the basis for discussing the DSLs in the following sections:

Expressiveness FExpressiveness (sometimes also “expressivity”) is often a main con-
cerned of DSLs and one of their fundamental advantages: their increased expressive-
ness over general-purpose languages (GPLs). This typically means that programs are
shorter and their semantics are easier to access by processing tools. Programs ex-
pressed using a DSL can and should be significantly more concise than expressed in
GPLs.

Coverage A DSL can cover its intended domain entirely, i.e. for each program rele-
vant to the domain a program can be written in this DSL. This often has the risk of
the DSL to become too general and therefore resulting in bigger programs and losing
the advantage of increased expressiveness. In practice, many languages do not fully
cover their respective domain [Vélter et al., 2013].

Semantics and Execution Volter et al. [2013] distinguishes semantics between static
semantics and execution semantics. Static semantics are often established by means of
language constraints and type-checking rules. Constraints check properties of a model
and can be validated to check if a model is structurally and syntactically correct, e.g.
basic constraints and typing rules. FEzecution semantics denote the semantics of a
DSL either when transformed in another DSL, or when interpreted/executed.
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Transformations (M2M or M2T) define the execution semantics of a DSL by map-
ping it either to other DSLs or eventually to the actual execution infrastructure, of-
ten the targeted GPLs. The M2M transformations are discussed in this chapter in
Section 6.4; M2T transformations are discussed later in Chapter 8 in terms of code
generation.

Support Platforms / Integration Once the executable artifacts are generated, the
support for target platforms and integration into existing environments, tools, and
platforms becomes relevant. “Platform” in this context means the technical execution
context, so the software framework, and all additional tools or libraries necessary to
use the generated artifacts. The DSL needs to be able to integrate with other parts of
the development process, and ideally supports integration with other languages and
platforms without a lot of effort.

Concrete Syntax Similar to using the natural abstractions of the stakeholders, (re)using
the natural or existing, established notations in a DSL is a key point for it’s efficiency
and adaption by the users. A good notation makes expression of common concerns
simple and concise and provides sensible defaults. It is acceptable for less common
concerns to require a little more verbosity in the notation. Concerns to be addressed
when designing a syntax are good writability, readability, learnability, and effective-
ness. Le. the syntax can be written efficiently, it is concise, can be read and understood
easily to effectively express typical domain problems and produce good solutions, and
provides the necessary context to understand the code.

Some exemplary classes of concrete syntax are (purely) teztual, well suited for
detailed descriptions, graphical, good for describing relationships effectively, sym-
bolic, e.g., mathematical expressions using a symbolic notation, or tables and matrices
that can be useful for collections of data items, or two independent dimensions of
data.[Volter et al., 2013]

The following section discusses the introduced language design aspects along the
five MPS language aspects shown in Fig. 6.5. For the sake of brevity, all aspects
are discussed with selected examples from the Motion Primitive DSL, the Dynamical
System DSL, and the Coordination DSL, as well as the Primitive Coordination DSL.

6.3.1. Structure

In MPS, DSLs are designed “metamodel-first”, by first defining the language structure
and then adding editors, type system, constraints, and transformations. Therefore,
for designing the languages, the different concerns of the metamodel were converted to
the language structure of the different DSLs according to the modularization discussed
in the previous section. Since the structure of the proposed DSLs is defined with the
Structure Language of MPS, this gives a full picture of the levels of modeling shown in
Fig. 2.1: The structure base language of MPS constitutes the meta-metamodel (M3)
level in this work by providing the models the DSLs have to conform to.
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interface concept AdaptiveModuleIF extends INamedConcept

AdaptivelIF
Triggered
HasStatelF
HasProperties

properties:

<< ... >>

children:

ds : DynamicalSystemIF[0..n]
goal : Input[0..1]

feedback : Input[0..1]

cfg : Input[o..1]

speed : Input[0..1]

phase : Input[0..1]

train : Input[0..1]

statein : Input[0..1]
control : Output[0..1]
stateout : Output[0..1]

references:
<< >

Figure 6.6.: Exemplary language structure definition in MPS for the Adaptive Mod-
ule interface, defining its relation to further interfaces (upper right) and
the cardinality and roles of contained concepts (lower left).

Definition of the language structure is exemplified mainly with the Motion Primitive
DSL. The main root concept of the language is the Circuit that is a container for the
Adaptive Components, Adaptive Modules that represent the motion primitives as
well as all Spaces necessary for the desired experiment or application. A further root
concept is the Space Type that specifies which Spaces are valid within the Circuit.

Fig. 6.6 shows how these concepts and the metamodel look like when implemented
with MPS. It shows a screenshot of the MPS IDE with the language tree and all its
aspects on the left side and the editor view on the right side. The language tree is un-
folded showing some of the main concepts of the language, e.g., the Adaptive Module,
the specialized Adaptive Components, Spaces, on left side. The right side shows the
structural definition of an interface for the Adaptive Module concept, defining child
relation to Inputs, Outputs, and Dynamical Systems, as defined in Section 5.1. All
other concepts are specified in a similar fashion. The main structural and modulariza-
tion units of this language are Adaptive Components and Adaptive Modules. They
are partitioned in Circuits and specify the main structure of the motion primitive
architecture.

Further important structural elements of the language are Space Types and Spaces
to model the relation and communication between the Adaptive Components and
Adaptive Modules. Space Type is a further root concept of the language to not bind
it to a specific Circuit, but make it available for usage in several Circuits. This allows
for example to define and share certain robot-specific Space Types, e.g., Oncilla Leg
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<default> editor for concept AdaptiveModule
node cell layout:

[-

primitive { name }
strategy : % strategy %
in : % goal % , % feedback % , % cfg % , % speed % , % phase % , % statein %
out : % control % , % stateout %
ds : (- % ds % /empty cell: <defaults -)
# properties #
<constant>

/folded cell: [- primitive { name } -]

-]

Figure 6.7.: Language editor definition in MPS, showing the definition of a textual
editor for the Adaptive Module with its child concepts and properties.

Angles, KUKA LWR torques, etc., each with the robot specific types and dimensions,
which allows to offer robot-specific packages for convenience and reuse. Spaces can be
added and specified by a Space Type. Fig. 6.8b shows specification of two different
Spaces of the same type.

6.3.2. Editor

After creating the structure of the language, the concrete syntax is added to the
language with MPS’ Editor Language. All of the DSLs are textual or at least ini-
tially developed as textual DSLs. This is because good textual DSLs can be very
effective. Purely textual DSLs usually integrate very well with existing development
infrastructures and are usually well suited for detailed specification of anything that
is algorithmic or generally resembles traditional GPL like code.[Vélter et al., 2013]
“Textual representations for example usually have the advantage of faster develop-
ment and are platform and tool independent whereas graphical models provide a better
overview and ease the understanding of models.” [Karsai et al., 2009] However, since
the introduced DSLs are developed within the projectional editing workbench MPS,
introducing additional graphical projections to allow graphical editing of the DSLs is
explicitly supported. This is not detailed in this work but has been prototypically
implemented for the Coordination DSL where the graphical notation is one of the
natural natotions.

Fig. 6.7 shows how a textual editor for a concept is designed, again with the exam-
ple of the Adaptive Module. The “node cell layout” specifies the textual layout of
the concept editor, with the bold phrases (“primitive”, “strategy”, etc.) being fixed
strings, strings in braces (“name”) being wildcards for concept properties, strings en-
closed with the percent sign (“%strategy%”, “%goal%”, etc.) being wildcards for other
concept editors, and strings enclosed with the number sign (“#properties#”) referring
to other editors. MPS also allows defining the layout of the “folded cell”, i.e. a limited
and compact representation of the concept so that it can be folded in a more complex
system specification for the sake of clarity.

Fig. 6.8 shows how this looks like for in the running example, showing a snippet of
the DSL code to edit the Reaching Controller with an Adaptive Module and a Dyna-
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mical System inside. The snippet also shows the feature of the folded cell. The goal
input mapping, the Oncilla Inverse Kinematics, and the Criterion, the Translatory
Criterion, are not fully visible with all its properties, but folded and just represented
with their concept name (“Oncilla Inverse Kinematics”) and instance name (“invkin”)
(the folded cell).

A main aspect of the language is to raise its effectiveness of expressing structural
motion primitive architectures compared to expressing them with GPLs. One of the
language aspects to achieve this is by allowing compact specification of Adaptive Com-
ponents and Adaptive Modules, e.g. by simple selecting the processing strategy and
thereby configuring its execution scheme. Fig. 6.8a shows a snippet that specifies a
motion primitive, it’s embedding in the architectural context by surrounding it with
a Reaching Controller (an Adaptive Component), and defining its inner dynamics
(the Dynamical System). The motion primitive is specified to be computed and to
generate its next output every time the overall motion primitive Circuit is stepped.

The design of the textual editor, the concrete textual syntax of the language, should
follow the natural notation of the domain and the domain experts. The domain analy-
sis, however, did not show a natural notation in the domain, since most of the motion
primitives are defined in GPL code. If any, there is the mathematical notation of
expressing a motion primitive by its dynamics as realized with the Dynamical System
DSL. For the Motion Primitive DSL the natural notation is therefore mainly based on
using the terms that occur in the domain, e.g., primitives, inputs, outputs, mappings,
criterions, etc.

Another means to raise the effectiveness is editor support. The skeleton of a motion
primitive, shown in Fig. 6.8a, for example is created every time a new primitive is
created in the language, so that the user only has to fill out the remaining blanks
and variation points. Fig. 6.8 shows a DSL example with several of the introduced
concepts involved. The snippet shows an Adaptive Component (red) with a mo-
tion primitive resp. an Adaptive Module, Inverse Kinematics Mapping, a Criterion,
together forming a Reaching Controller to reach a certain pose and check convergence.

The expressiveness of the Dynamical System DSL is largely driven by the easy
integration of the formula expressing the dynamics of a motion primitive with its
Inputs and Outputs. Tying data streams of a complex system to algorithmic code is
usually a tedious task in GPL code, but very compact in the Dynamical System DSL
while still being formulated on an abstract level and therefore platform and technology
independent. Its notation is the natural notation of the domain expert, mathematical
expressions, who can easily specify its connection to the surrounding system, yet do
not need to be concerned with the technical details that realize its proper execution
and technical integration.

The editor additionally provides context help, as shown in Fig. 6.9, and can validate
the expressions based on type system and inference rules. Fig. 6.9 shows a DSL
example that specifies the internal dynamics of an Adaptive Module by specifying its
Dynamical System with the Dynamical System DSL. The Dynamical System DSL is
a textual DSL to match the natural notation of Dynamical Systems: mathematical
expressions. The snippet shown in Fig. 6.9 expresses the Dynamical System initially
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Reaching Controller Place Foot {
primitive joint ctrl
strategy: timed(samplerate: 1)
in: goal<leg angles>, fdb<leg angles>, <no cfg>, <no speed>, <no phase>, <no statein>
out: ctrl<leg angles>, <no stateout>
ds: <{ctrl} = {fdb} + 0.1 * ({goal} - {fdb})>
properties: << ... >>

criterion : TranslatoryCriterion distance from descriptor
map goal input: Oncilla Inverse Kinematics invkin from descriptor map feedback input: <no map_fdb>
map control output: <no map_ctrils}

(a) Motion Primitive DSL snippet of a Reaching Controller to reach a certain pose and check
convergence.

Space left fore leg status <leg angles>
connection outgoing to fdb of PlaceFoot.jointctrl

Space left fore leg command <leg angles>
connection ingoing from ctrl of PlaceFoot.jointctrl

(b) Definition of two Spaces of the same Space Type for the status and command of the left
fore Oncilla quadruped robot (Oncilla) leg.

Figure 6.8.: Examples of the structural motion primitive architecture aspects ex-
pressed in the Motion Primitive DSL.

introduced in Fig. 5.14, assigning the return value of a calculation referencing the
feedback and goal Inputs to the control Output of the surrounding Adaptive Mod-
ule.

6.3.3. Type System

The Dynamical System DSL makes use of the type system aspect to covers the al-
gorithmic aspects of the motion primitive architecture metamodel. It describes the
Dynamical Systems, the internals of Adaptive Modules that determine its dynamics.
The main concept of the language is the Dynamical System, which extends an ab-
stract Dynamical System concept of the Motion Primitive DSL. The intention of this
integration with the Motion Primitive DSL is that the mathematical expression to rep-
resenting the dynamics of the motion primitive can be integrated with the Adaptive
Module concept, shown in Fig. 6.9.

Large parts of expressing mathematical expressions with the DSL are already avail-
able with MPS’ Fxpression Language. This language provides concepts for Expres-
sions, unary and binary, and Assignments. Therefore, allowing expressing Dynamical
Systems as mathematical expressions in the Dynamical System DSL and using the
Inputs and Outputs of the Adaptive Modules in the expression is rather a matter
of integrating those with the MPS language and type system. For this matter, Dyna-
mical System DSL introduced two new concepts, references to Inputs and Outputs:
InputReference and OutputReference. Fig. 6.10 shows two rules that incorporate
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Reaching Controller Place Foot {
primitive joint ctrl
strategy: timed(samplerate: 1)
in: goal<leg angles>, fdb<leg angles>, <no cfg>, <no speed>, <no phase>, <no statein>
out ctrl<leg angles>, <no stateouts
<{ctr1} = {fdb} + 0.1 * ({goal} - {ffdb})>
. . goal of PlaceFoot jointctrl goal (Running
criterion : JointAnglesCriterion anglescmlv ||om uescripuor
map goal input: Oncilla Inverse Kinematics invkin from descriptor map feedback input: <
map control output: <no map ctrls}

Figure 6.9.: Dynamical System DSL snippet integrated into the Motion Primitive DSL
specification of an Adaptive Module. Proper scoping allows only referenc-
ing Inputs and Outputs of the surrounding Adaptive Module, as detailed
in Section 6.3.4.

these concepts into the MPS language and type system.

The two concepts InputReference and OutputReference extend the MPS base con-
cept Expression, so that they can be used at any point in a mathematical expression
where any other expression would be valid, e.g., within parenthesis, as term of an
addition, factor of a multiplication, etc. This, however, does not allow the inference
rule of MPS to check typing of an expression. To allow this, type system rules are
used to specify that the type of an InputReference is the same as of an Input, and
the type of an OutputReference is the same as of an Output (Input and Output
are both strongly typed in the Motion Primitive DSL). In the current version of the
language, the types of Inputs and Outputs are specified to be of type double for
reasons of simplification, as shown in Fig. 6.10a. This could be extended to be more
fine grained based on the Data Type definitions in the Motion Primitive DSL to allow
more sophisticated type checks.

Another rule for OutputReference, shown in Fig. 6.10b, specifies that the Outpu-
tReference concept is a legal “lvalue”, which means that it can be used on the left
side of an Assignment operation. This allows a Dynamical System to use Inputs and
Outputs in arbitrary expressions on the right side of an Assignment operation, but
only a reference to an Output of an Adaptive Module to be used on the left side of
an Assignment operation.

The scoping rule for Inputs and Outputs established in the Motion Primitive DSL,
only allowing references to Inputs and Outputs inside the Adaptive Module they are
references from, restrict the usage of Inputs and Outputs (their respective InputRe-
ferences and OutputReferences) to only legal ones, as shown by the context help in
Fig. 6.9.

6.3.4. Constraints

A further important advantage in terms of support when using domain-specific lan-
guages is the possibility to validate its underlying models on a semantic level, whereas
typically GPL programs can just be validated on a technical level. Means to do this
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concept behavior OutputReference {
constructor {

statement s>

public static boolean lvalue()

rule typeof_Input { overrides Expression.lvalue {
applicable for concept = Input as input return true;
overrides false ¥
do { 1
infer typeof(input) :<=: =double>;
) } (b) OutputReference is integrated
into the MPS type system by
(a) The Input concept of the Motion Prim- declaring it a legal “lvalue”, which
itive DSL is specified to be of double means that it can be used on the
type, so it can be used inside Expres- left side of an Assignment opera-
sions. tion.

Figure 6.10.: Integration of domain concepts with the MPS base language and type
System.

are included in the DSLs as constraints and type system as detailed in Section 6.3.
These are validated by MPS instantaneously during editing.

An example for constraints in the Motion Primitive DSL is a set of rules that
perform checks on ingoing and outgoing connections of Spaces. Since both, Spaces
resp. Space Types are strongly typed, rules can check type compatibility of the
connections endpoints, the Space and the Input or Output and issue a warning to
the user when an incompatibility is detected. Chapter 8 and Chapter 9 exemplify how
this looks like from a user’s perspective.

A further set of rules checks the semantics of the specialized Adaptive Component
concepts, e.g., warns when a Reaching Controller or Tracking Controller doesn’t
provide a Criterion to check its convergence or does not have a goal Input defined.
This is not the case for a Pattern Generator for example that does not necessarily need
a goal given and does not necessarily need a Criterion. To not restrict experimenting
too much, though, these validation rules issue warnings, not errors, to still allow code
generation and testing.

Another important help is scoping, i.e. restricting references to only valid elements
of the model. An example where this is realized in the Motion Primitive DSL is
referencing of Inputs and Outputs. Input-based Processing Strategies for example
specify the Inputs that trigger execution of the Adaptive Modules. This is only valid
for Inputs of the same Adaptive Module, not all Input instances of the entire model.
The constraint is implemented accordingly in the Motion Primitive DSL, a concrete
example is shown above in Fig. 6.9.

The text color of the concepts matches the color-coding of the Motion Primitive
DSL, though. This is especially relevant since the Component Coordination DSL and
Middleware Coordination DSL introduced in Section 6.2 also add additional Actions
and Conditions. They also have their specific color-coding matching the colors of
the Component DSL and Middleware DSL respectively, so that it is visually traceable
to which domain the specific actions and conditions belong. Fig. 6.11 shows a DSL
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state Place Foot (final: false)

actions:
on entry: publish Translation: z: 0.0 y: 0.4 x: 0.7 to left fore foot goal

on exit: << ... >>
transitions:
-> Backup on PlaceFoot.JointAnglesCriterion converged if <no jexlCondition:

-> Stop on button {exit} pressed if <no jexlCondition>

Figure 6.11.: Coordination DSL snippet with Primitive Coordination DSL extensions
to publish a goal to a Space, and transition to the next state on conver-
gence of the corresponding Reaching Controller for this goal.

snippet of a State with motion primitive specific extensions.

Primitive Coordination DSL A more interest case of constraints is realized with the
Primitive Coordination DSL. Its constraints and inference rules can be especially pow-
erful as they can operate on the structural as well as the behavioral models, checking
correctness of concerns that deal with both models. The Primitive Coordination DSL
depends on the structural model through its references to the Motion Primitive DSL
and depends on the behavioral model through extending the Coordination DSL. This
enables constraints in the Primitive Coordination DSL that perform checks based on
both models.

One example implemented with the Primitive Coordination DSL is the Converged-
Condition that consists of a mandatory reference to a Criterion, so that it is only
possible to check for convergence of Adaptive Components that indeed provide a
Criterion and therefore provide an Adaptive Component Status in the first place.

Another example is a constraint defined for the PublishToSpace Action, to publish
a certain data item to a Space. The Space and Space Type are part of the Motion
Primitive DSL (belonging to the structural model), the data type is part of the Types
DSL, and the Action itself part of the Primitive Coordination DSL (the behavioral
model). The validation rule is part of the Primitive Coordination DSL, but can follow
the reference to the Space in the structural models and check for compatibility between
the Space Type and the Data Type of the item to send.

This is an example of a validation step that helps avoiding expensive debugging at
run time and therefore repeating costly experiments. This concrete validation prevents
an error that would not be detected by a compiler, but would lead to an error during
run time that is usually hard to debug. If executed, the Joint Angle would potentially
be serialized, sent over the network, and tried to be deserialized on the receiving side
while the receiving side would assume a different data type according to the Space
Type. This would in most cases result in a runtime error, e.g., in a segmentation fault
when mapped to C++, as discussed in Chapter 7.
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Dynamical System Motion Primitive Coordination
Components >(/ :
E Graph Project :
Y Y Y Y

generation artifacts /

Figure 6.12.: Model-to-model transformations from higher abstraction languages to
lower abstraction languages. Solid arrows indicate model-to-model trans-
formations discussed in Section 6.4.2, dashed arrows indicate model-to-
text transformations discussed in Section 6.4.3.

6.4. Transformations

A typical goal of model-driven engineering (MDE) approaches in general, and this
work, is automation, e.g., through code generation, to bridge the gap between mod-
els and implementation, i.e. making the models executable. For external DSLs, as
they are used in this work, there are mainly two different usage patterns: generation
and interpretation. Both add execution semantics to the DSLs, but with different
advantages of which just a few will be discussed here.

When interpreting models, the execution semantics is given by how the interpreter
executes the models. This usually enables faster changes as it does not require extra
code generation and deployment steps when the models change, since the models are
directly executed. Code generation on the other hand defines the execution semantics
of a DSL by mapping it either to other DSLs or eventually to the actual execution
infrastructure, often the targeted GPLs. There are two main reasons why this work
uses code generation for the most parts: firstly, the existing programming model,
introduced in Chapter 7, simplifies code generation; and secondly because it fits quite
well with the LMEC approach.

Code generation can be done from abstract levels down to pure GPL code, which has
its advantages as it lowers platform requirements and dependencies. This is often not
feasible though as code generators can become very complex. Existing programming
models and domain-specific software libraries usually reduce complexity of code gener-
ators, as the difference between models and their corresponding software abstractions
is smaller. Code generators then usually only configure the domain-specific software
libraries according to the model instead of generating the full code.

In contrast to interpretation, code generation also fits well with the LMEC approach
and the iterative process introduced in Chapter 4. While an interpreter is often mono-

79



Chapter 6. Language Modularization and Design

lithic and has to be changed when the models change, code generation can be done
gradually by first only generating parts of the code and implemented others manually.
Later code generators can be extended gradually to generate more parts of the code.
This also works by first providing generators for lower level DSLs and later tailoring
it more and more to domain experts by raising the level of abstraction.

To add execution semantics to the DSLs, the transformations aspect (also called
generator aspect) of MPS adds M2M and M2T transformations to the DSLs. While
MPS would allow implementing code generators, i.e. M2T transformations from the
languages discussed above to generate GPL code directly, it makes sense to transform
the languages discussed above into so-called intermediate models that are one step
closer to the final software artifacts, yet still models. This section introduces some
of the implemented model-to-model transformations that generate these intermediate
models, the final model-to-text transformations that eventually generate the actual
executable GPL code, depicted in Fig. 6.12.

6.4.1. Intermediate DSLs

Generating intermediate models in a chain of several transformations, sometimes re-
ferred to as chaining, instead of directly generation source code in a single trans-
formation has several advantages. An obvious reason is to break down the complex
task of code generating into smaller, better maintainable pieces, i.e. multiple stages
of M2M and M2T transformations, cf. Fig. 6.12. Fig. 6.12 shows the set of M2M
transformations developed in this work targeting the generation of system-level visu-
alization, executable source code, and project configuration for source builds. Solid
arrows indicate model-to-model transformations, dashed arrows indicate model-to-text
transformations that are introduced in Section 8.4.

Another reason is reuse of the intermediate models or languages. Several top-level
languages may target the same artifact and can therefore target the same intermediate
language with its M2T, instead of each language implementing the M2T in parallel.
Both, the Motion Primitive DSL and the Coordination DSL, target generation of
graph-like system visualization. Instead of both including M2T transformations for
this target and therefore both targeting a concrete technology, i.e. concrete textual
output, both implement M2T transformations to the intermediate Graph DSL, that
implements the M2T transformations once and so that retargeting to a different tar-
get technology, i.e. different concrete textual output, can be done at one single place.
Multi-stage transformations can get complex, though, complicating the debugging the
overall transformation. MPS solves this problem by (optionally) keeping the intermedi-
ate models, i.e. models of the intermediate languages, for debugging purposes. [Volter
et al., 2013]

Apart from the introduced DSLs that target the actual modeling of the motion prim-
itive architectures, two further DSLs were developed in this work and serve mainly as
intermediate steps in the code generation pipeline.
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6.4.1.1. Project DSL

The Project DSL is a DSL with the purpose of modeling software projects, i.e. software
artifacts and their library dependencies. It’s main abstractions follow cross-platform
build process software CMake [Martin and Hoffman, 2010] and are Projects and De-
pendencies. Projects contain an arbitrary number of Dependencies, which specify
a software library name and a minimum required version, and if they are mandatory
or optional. The language syntax and design is simple and not optimized for any of
the design aspects above, since it is mainly used as an intermediate step in the trans-
formation chain detailed in the following section for generating project dependency
configurations, not to be written manually.

6.4.1.2. Graph DSL

The Graph DSL is a DSL with the purpose of modeling project visual representations
of graphs. Its abstractions describe the topology and visual aspects of graph represen-
tations and are mainly inspired by the GraphML. Its main abstractions are therefore
Graphs, Nodes, Edges and their Labels, as well as their visual attributes.

Similar to the Project DSL, the language syntax and design is simple, since it
is mainly used as an intermediate step in the transformation chain for generating
visualizations of the structural architecture and the coordination, as exemplified in
the course of the thesis.

6.4.2. Model-to-Model Transformations

The M2M transformations shown in Fig. 6.12 map the high-level models of the motion
primitive architectures, expressed in the Motion Primitive DSL, Coordination DSL,
and Dynamical System DSL to platform specific models, such as the Component DSL
and Middleware DSL models.

The models of the Motion Primitive DSL, the structural description of the motion
primitive architecture, the Circuit with the Adaptive Components, Adaptive Mod-
ules and Spaces is mapped to a component Circuit and Components of the Com-
ponent DSL. While this transformation yields the Component skeletons and their
configuration, a mapping from the Dynamical System DSL yields the computational
content of the Components that has to fit into the skeletons. Both, the models of
the Motion Primitive DSL and of the Coordination DSL are transformed to Graph
DSL models to yield two separate graph representations of the static architecture (the
Circuit) and the dynamic aspects (the State Machine). Additionally, the Motion
Primitive DSL and of the Coordination DSL models are transformed to Project DSL
models, i.e. to Dependencies that represent their software dependencies.

Fig. 6.13 shows an exemplary transformation rule (“reduction rule” in MPS) from
the Motion Primitive DSL that transforms (reduces) an Adaptive Module to a Com-
ponent. These transformations rules, transforming Motion Primitive DSL models to
Component DSL models, target generation of executable code.
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Component $ name] ($[classname
Initial State: <no initstates
Processing Strategy: $COPY_SRCs [timed(samplerate: 1)
Input Ports:
$COPY_SRCS$ [InputPort<DataType> <no name=(DEFAULT, <no scope=
$COPY_SRC$ [InputPort<DataType> <no name=(DEFAULT, <no scope=
$COPY_SRCs [ InputPort<DataType> <no name=(DEFAULT, <=no scope=
$COPY_SRCS$ [InputPort<DataType> <no name=(DEFAULT, <no scope=
$COPY_SRC$ [InputPort<DataType> <no name=(DEFAULT, <no scope=
$COPY_SRC$ [InputPort<DataType> <no name=(DEFAULT, <no scope=
Output Ports:
$COPY_SRC$ [OutputPort<DataType> <no name=(DEFAULT, <no scope=)
$COPY_SRC$ [OutputPort<DataType> <=no name=(DEFAULT, <no scope=)
properties: $COPY _SRCLS [{ <no name=: false}

—— — — — —

Figure 6.13.: Model-to-model transformation rule to transform an Adaptive Module
to a Component.

The transformation rule shown in Fig. 6.13 takes an Adaptive Module as input
and yields a Component. The transformation rule shows the Component editor of
the Component DSL and allows to filling its editable parts with macros based on
the properties of the input Adaptive Module. Strings in braces, e.g., “name”, are
properties of the Component that are set based on properties of the input, i.e. the
Adaptive Module.

The name of the component is based on the Adaptive Module name, but eliminated
white spaces as these are forbidden in the name property of the Component concept.
“$COPY_SRCH[...]” indicates that another transformation rule is called. The content
of the bracket is then replaced by the output of this transformation rule, e.g. the In-
put Ports of the Component in this example are generated by calling transformation
rules on all Inputs of the Adaptive Module that transform these into Input Ports.
Configuration of the resulting Ports is done according to the Space that the respective
Inputs and Outputs were connected to.

Note, that the Adaptive Components are not directly mapped to single Compo-
nents, but rather to a set of Components, namely its contained Adaptive Module,
the Criterion, and the Mappings, each configured according to internal wiring of the
specific Adaptive Component, cf. Section 5.1.4.

6.4.3. Model-to-Text Transformations

In addition to the M2M transformations, M2T transformations are specified to gener-
ate the textual artifacts, e.g., executable GPL source code and textual specifications
for a graph-like system visualization. The transformations developed in this work to
generate the actual executable experiments are discussed in more detail from a user
perspective in Section 8.4. This section rather exemplifies M2T transformations in
MPS in one example.

While code generators can get quite complex, the code generators in this work are
well maintainable due to the chosen language modularization and M2T transforma-
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<$ [state] 1d="§[state 1d]">
$COPY_SRCL$ [1nvokes
<onentry>
$COPY_SRCLS [<actions></actions>
$L00Ps [SIFs [<send 1d="$ [walt condition]" eventexpr="$[wait condition]" delayexpr="$ [duration]"></send>
</onentry>
<onexit>
$1L00Ps [SIFs [<cancel sendid="$|wait condition]"></cancel>
$COPY_SRCLS [<actions></actions>
</onexit>
$COPY_SRCLS$ [<transitions></transitions>
</state>

Figure 6.14.: Generator rule to map a Coordination DSL State to SCXML elements.

tions that mapped the most domain-specific and abstract concepts already to models
closer to implementation, as discussed in Section 6.4.2.

Fig. 6.14 shows an exemplary generator rule of the Coordination DSL generator.
The code generator targets State Chart XML (SCXML) [Barnett et al., 2013], a free
eXtensible Markup Language (XML)-based file format for graphs. The Graph DSL
generator generates XML files in the GraphML format. This is technically a two-step
transformation, as an M2M transformation targets the MPS’ XML base language,
which itself has generation rules to produce the actual text file in XML format as
output. This is not explicitly visualized in Fig. 6.12 for the sake of clarity.

The generator rule shown in Fig. 6.14 transforms a Coordination DSL State into an
according SCXML (XML) element. Similar to the M2M transformation rule shown
in Section 6.4.2, the rule consists of several phrases enclosed with a bracket (“$[...]”)
which indicates wildcards that are replaced with actual model properties during code
generation, e.g., the “id” property of the XML node element is replaced based on the
“name” property of the Coordination DSL State that is transformed by this rule.

The result of this code generation step is an SCXML file, which performs the in-
tended coordination of the motion primitives when executed with the Apache Com-
mons SCXML engine, cf. Section 7.2.2.

When code generation targets a format that is, other than XML, not available as
base language in MPS, code generators are written in the so-called TextGen language
aspect to generate text output directly. The TextGen aspect contains constructs to
print out text, transform nodes into text values as well as layouting the text output.
This is exemplified for further code generators in Section 8.4.

6.5. Discussion

This chapter proved the language modularization, extension, and composition ap-
proach suitable to implement a set of DSLs to cover the richness of the domain intro-
duced in Chapter 3 and to cover the separate concerns presented in the metamodel in
Chapter 5. While the functional requirements introduced in Section 4.2 were mainly
tackled by the models presented in Chapter 5, the DSLs introduced in this chapter take
several of the non-functional requirements into account. While the use of the language
workbench is not in line with the most common choice in robotics, Xtext [Nordmann
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et al., 2014], this work makes reuse of MPS, an state of the art open-source language
workbench (NFR1). The language aspects available with MPS to design DSLs were
suitable to design the structure, the concrete syntax, constraints and type system, as
well as multi-stage transformations for code generation. The language modulariza-
tion, foremost the according modularization of the transformations, allows and eases
iteration and constant refinement to keep up with new research results, as the transfor-
mation and code generation is divided into small, maintainable transformation steps
(NFR4).

The focus of this chapter and the presented DSLs, though, is to ease expressing of
domain problems and solutions for domain experts (NFR5) and allow formulation
of systems in a technology-independent and platform-neutral way (NFR6). The pre-
sented DSLs with the concrete syntax, constraints, type systems, and transformations
provide the basis for rich editor support like syntax highlighting and context help,
validation at design time and code generation. Especially the Primitive Coordination
DSL makes the potential of the LMEC approach visible: It operates on the structural
models as well as the behavioral models and can therefore provide support on the
cross-cutting concerns, which are often hard to incorporate and consider in a clas-
sical development process, especially when system grow and become complex. This
chapter shows some examples; more will be exemplified and discussed from the user’s
perspective in Chapter 8 - Chapter 10.

In the same way that the Dynamical System DSL extends the Motion Primitive
DSL to allow modeling of the algorithmic models, the Dynamical Systems, further
languages can be composed with the presented approach to detail further concepts and
aspects. The DSL introduced by Klotzbiicher et al. [2011] could be incorporated to ex-
press Dynamical Systems, and the geometric relations DSL by Laet et al. [2012¢] could
be incorporated to ease specification of Mappings and Transitions. The language
modularization, extension, and composition and the introduced multi-staged transfor-
mations, however, allow extending these languages. At the current state of affairs, this
requires re-implementing these DSLs in MPS for the sake of meta-metamodel compat-
ibility. This is exemplified in this work with the reuse of SCXML and GraphML.

The Component DSL was designed for an easy mapping of the Motion Primitive
DSL concepts to component-based software artifacts inside MPS. Existing ADLs such
as Architecture Analysis and Design Language (AADL), the Unified Modeling Lan-
guage (UML), and the Systems Modeling Language (SysML) can be considered as
potential (alternative or additional) transformation targets as they provide rich mod-
eling support for technical architectures, are widely used, and come with huge tool
support.
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Chapter 7.

Programming Model and Technology
Mapping

Target of this work and the design process introduced in Chapter 4 is the generation
of executable systems that can be run on robots to test motion primitive architecture
hypotheses (NFRT). The idea behind model-driven engineering (MDE) is to automate
the necessary software development by automatically mapping these models to an
executable target technology as discussed in Section 6.4. The target technology of
this mapping is termed technology mapping in conformance with [Vélter, 2005] and
denotes the software architecture, software libraries and programming languages, the
models are mapped to, e.g., by means of code generation.

Before automation can be set up, the target technology needs to be tested to eval-
uate if the technology mapping addresses the requirements of the domain and the
project context (NFR2), e.g., platform requirements, performance, or quality of ser-
vice requirements. In order to so, developers need to implement exemplary applications
against this technology mapping manually at first and, in order to do this consistently,
need a programming model. A programming model in this sense is the “architecture
APT” [Vélter, 2005] that applications are implemented against, i.e. it specifies how
an architecture is used from a developer’s perspective. Vélter [2005] emphasizes the
importance of mock platforms and vertical prototypes during a design process as pro-
posed in Chapter 4. A mock platform, e.g., a robot simulator, allows developers to fast
and easily evaluate their systems locally, sparing the typically great effort of experi-
menting with hardware. Vertical prototypes on the other hand are proof-of-concepts
that implement complex features of a system through all implementation levels. They
serve as an early evaluation of the chosen programming model and technology map-
ping before automation of software development is set up to map the models to this
technology.

Section 7.1 introduces the programming model that was developed in this work in
compliance with the metamodel presented in Chapter 5. Section 7.2 introduces an
exemplary technology mapping that was implemented in the course of the AMARSI
project to realize the programming model. Section 7.3 presents two mock platforms
and vertical prototypes that were implemented in the AMARSI project and further
research projects to evaluate the programming model and technology mapping. Sec-
tion 7.4 shows how the programming model, once established, serves as a basis to
include existing software artifacts into the MDE process (NFR3). Software imple-
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Component

- name :string

<+—— Generalization

- €—— Containment
+ onProcess() :void

<>——  Assignment
/ 0..% 1 ‘\
OutputPort InputPort Lifecycle ProcessingStrategy

+ publish(T) :void - buffersize :int=1

+ get() :T
+ isEmpty() :boolean

N/ T~ 7 X

InputBasedProcessing TimedProcessing

+ configure() :void + processOninputVector() :boolean - samplerate :int=1

+ processOnTick() :boolean

Figure 7.1.: Class diagram of the programming model, focused in the component level.

mented against this programming model can be incorporated into the software devel-
opment automation, since it thereby complies with the metamodel, as it is detailed in
Section 7.4.

7.1. Programming Model

The programming model is a software realization of the metamodel presented in Chap-
ter 5 as it maps the conceptual ideas of the metamodel to technical concepts. It further
details the relation between the domain-specific and the more technical parts of the
software architecture. The programming model introduced in this work is targeted by
the code generators and used when implementing software explicitly for the motion
primitive environment. The following sections describe the concepts and abstractions
of the programming model in terms of its exposed interfaces, properties, methods,
and events. It is a result of iteration within the AMARSI research project together
with the project partners and has been extended along the language concepts of the
Motion Primitive DSL. The programming model needs to support execution of the
domain-specific language (DSL) concepts introduced in Chapter 5, such as Adaptive
Component, Adaptive Module, Mappings, Dynamical Systems, as well as their in-
terplay.

7.1.1. Structural Model

State of the art in software development in robotics and several other disciplines is
component-based software engineering (CBSE), which aims to build complex systems
by composing software systems from a combination of reusable off-the-shelf or custom-
built components.

A system in this sense is realized as a graph of loosely coupled components commu-
nicating via dataflow. One of the key advantages is that more than one instruction
can be executed at once. Thus, if several components are ready to process at the same
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time, they can be executed in parallel, therefore potentially allowing massive parallel
execution. The graph in itself does not precisely specify the order of execution, but
instead is data-driven: Whenever input data is available, the respective components
will be processed and the result is sent.

Classical dataflow models assume infinite parallelism, which is not realizable. There-
fore, other models such as Kahn Process Networks have been suggested that are
demand-driven, i.e. components are only activated when their outputs are requested.
Other models, such as Synchronous Data Flow use metadata to statically schedule ex-
ecution as needed. However, these approaches also come with complexity and are pri-
marily necessary for more fine-grained dataflow than targeted within work, e.g., when
instruction rather then component granularity is used.[Liitkebohle and Wachsmuth,
2011]

Therefore, the programming model developed for this work uses the classical data-
driven execution with one or more threads per component. This approach reduces
the complexity and therefore time to develop and test new applications [Brugali and
Scandurra, 2009, Brugali and Shakhimardanov, 2010, Bischoff et al., 2010]. The main
processing element is the base component that the models of the motion primitive
architecture are mapped to, shown in Fig. 7.1. It contains the algorithms of a sub-part
of the application, e.g., a motion primitive. In order to communicate, components have
an arbitrary number of input and output ports that are connected to a communication
channel. Each port is strongly typed and has an identifier of the communication
channel it participates in, termed scope. Input ports receive data, can queue them
and hand them to the computational code inside the component. Components can
publish their computation results through their output ports. Ports can be defined to
communicate locally (only with components in the same process) or remotely, i.e. over
the network with components in other processes and on other machines. Each input
port has a buffer of an arbitrary (yet configurable) size to decouple computation and
different data consumption rates of connected components. By default, input ports
have a buffers size of 1 and always keep the last item.

7.1.1.1. Processing Strategies

When and if a component is processed is determined by the Parallel States defined
in the structural models in Section 5.1. The programming model defines interfaces for
timing-based strategies, which process components based on a fixed global clock, and
input-based strategies, which processes components based on incoming data. When
configured with an input-based strategy, e.g., port-triggered, incoming data at the
configured port or a combination of ports immediately triggers computation of the
component. By coupling several components in this way, complete effect chains, e.g.,
calculating a new control command based on latest sensor readings, can be created, all
triggered when new data is published to the first component in the chain. Input-based
strategies are the default strategies for Mappings, Transformations, and Criterions
to compute the output immediately when new data arrives. Fig. 7.2 shows this for the
Forward Kinematics and the Adaptive Module of the running example.
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Example: Mapping of the Reaching Controller to the programming
model.

An example of the Motion Primitive DSL concepts mapped to software artifacts
of the chosen programming model is shown in Fig. 7.2. Both, the Forward Kine-
matics Mapping, as well as the Adaptive Module are mapped to Components.
The default Processing Strategy for Mappings is Port Triggered, which means
it will always compute when new data arrives at its Input Port and send the
result of the mapping as soon as the calculation is done. The Adaptive Module
is mapped to a component with two Input Ports and one Output Port, and is
configured with a Timed Processing Strategy by default. The model-to-model
transformation (M2M) maps the Output Port of the Mapping and the goal
Input Port to the same Scope to establish communication.

With this mapping, the Adaptive Module will produce a stable control signal on
its Output Port with the fixed timing given by the Timed Processing Strategy,
always with the latest received goal. The goal is updated every time the Map-
ping receives data, immediately computing the output due to the Port Triggered
Processing Strategy and passing it on to the goal Input Ports of the Adaptive
Module.

<<InputPort>> <<OutputPort>>
from to
<<TimedProcessing>>
strategy
<<Mapping>> <<InputPort>>
Forward goal
Kinematics I
<<AdaptiveModule>> | | <<OutputPort>>
Oncilla Walking Control

<<InputPort>>
fdb

<<PortTriggered>>
strategy

<<Class>>
dynsys

Figure 7.2.: Object diagram, showing the technology mapping of the Reaching
Controller of the running example.

Timing-based strategies subscribe to a global timing signal of the component circuit,
called the heartbeat. It can either be provided by a clock component, which produces
a timing signal with a fixed rate, or arbitrary other components, e.g., a component
representing the robot platform. In this way, the timing either has a fixed rate, is
based on the cycle time of a robot, or even based on the virtual time provided by a
simulation component. Timing-based strategies are the default for Adaptive Modules
to produce the control output with a stable fixed rate, which is often required for
robotics control. Fig. 7.2 shows how the the Reaching Controller from the running
example maps to the programming model. When configured with a timed Process-
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Figure 7.3.: Class diagram of the domain-specific programming model, realizing the
domain-specific models introduced in Chapter 5.

ing Strategy, Adaptive Modules may miss the latest sensor reading when they start
processing right before the sensor reading arrives. However, Dynamical Systems are
robust against these kind of perturbations, so that a fixed timing on the Output Ports
is often favorable over guaranteeing not to miss a sensor reading. This can even be
a requirement given by the robot’s interface as discussed for the KUKA Lightweight
Robot IV (KUKA LBR 1V) in Section 7.3.2.

7.1.1.2. Component Lifecycle

The base component has a lifecycle that allows transitions between different component
states such as execution, online learning, offline learning, and stopped. Each state
provides programming hooks that execute user-defined code on entering the state,
on exit, and when the component is periodically triggered by the processing strategy.
Additional generic lifecycle states defined by the base component are states for loading,
persisting, and resetting. Resetting includes cleaning all caches and input queues of
the component and calling hooks that allows the implementation of component-specific
reset functionality, e.g., resetting of the internal state.

7.1.1.3. Domain-Specific Components

Apart from the basic component, the programming model defines domain-specific com-
ponents according to the structural model introduced in Section 5.1. An excerpt of
how this programming model applies to the concepts defined in the Motion Primitive
DSL is shown in Fig. 7.3. The Adaptive Module, as one of the core concepts of the
Motion Primitive DSL, is realized in this programming model as a specialized compo-
nent, with a set of input and output ports with fixed roles. These ports correspond
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to the Inputs and Outputs defined in the Adaptive Modules concept. The Adaptive
Module has an extended domain-specific lifecycle, providing hooks for the specific
learning states of an adaptive module. In extension to the rather generic states and
transitions, the programming model defines domain-specific states and transitions that
are necessary in order to perform learning in the Adaptive Modules. For this purpose,
the actual processing is divided into three different states: Ezecution, OfflineLearning,
and OnlineLearning, cf. Fig. 5.7.

e In the Execution phase, the component is computing on every processing step,
i.e. the component-specific implementation of the processing method.

e In the OfflineLearning phase, the component performs an offline learning step,
e.g., a batch update, on every processing step, i.e. the component-specific imple-
mentation of the offline learning hook.

e In the OnlineLearning phase, both, execution and online learning, is performed
on every processing step. In order to support different learning methods, three
hooks are called on every processing step that can have component-specific im-
plementations: an online learning step before execution, the execution step, and
an online learning step after execution.c

This allows a component developer to define a certain behavior before, during and
after the component is processed in its online or offline learning state. In online learning
mode, hooks are arranged to allow learning steps before and after the processing step,
for instance to allow comparison of the Dynamical System before and after processes,
which is convenient or even necessary for some of the learning approaches surveyed in
the domain analysis.

The Dynamical System in the proposed the programming model has a step method
to advance it by one step, a Dynamical System Status, and parameters for tuning.

Note, that an Adaptive Component, part of the structural model introduced in
Section 5.1, does not have a specific counterpart in the programming model, as it
expresses a structural aspect and is therefore mapped to a set of components with
their specific port configuration to realize the internal logic of the Adaptive Compo-
nent.

7.1.2. Behavioral Model

The programming model for the core behavioral models detailed in Section 5.2 is
chosen in conformance with Harel state charts [Harel and Politi, 1998].

It is an event-driven model that consists of actions, which are invoked in response
to events. Actions are organized in states that can be transitioned to based on the
occurrence of events, usually managed through a so-called dispatcher with an event
queue.

To specify a program, the developer implements custom actions and assigns those
actions to states. The program control remains with the dispatcher and is passed to
the actions upon occurrence of an event.
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An advantage of this programming model is that a large number of technology map-
pings already exist, e.g., in the form of open-source execution environments for State
Chart XML (SCXML) with support for a large-number of programming languages, in-
cluding C/C++, C#, Java and Python, or as support for Unified Modeling Language
(UML) State Machine Diagrams that can be mapped to Harel state charts.

7.1.3. Algorithmic Model

The algorithmic model detailed in Section 5.3, i.e. the Dynamical System specified
with a mathematical expression, does not require a dedicated programming model. Its
model elements such as variables, constants, and algorithmic operations are core parts
of almost all general-purpose languages (GPLs) and are therefore already available for
developers.

7.2. Technology Mapping

A concrete technology mapping, i.e. an exemplary implementation of the programming
model for a specific software platform and in a specific programming language, serves
as an early validation of the concepts before being targeted by code generators. It can
checked for the quality of service which matches the requirements of the application
domain and addresses the non-functional requirements, cf. Section 4.2.

The metamodel and the DSLs introduced in Chapter 5 and Chapter 6 respectively
are designed to be technology-independent (NFR6) so that a technology mapping
can be chosen independently and even multiple different technology mappings can be
designed that the models will be mapped to. This is useful in robotics where differ-
ent robot platforms and applications may require completely different technologies,
e.g., real-time capable software on embedded systems, or large distributed systems for
computationally heavy machine learning applications.

This section introduces an exemplary technology mapping that was initially created
and iterated in the four years European research project AMARSI and used for the
use-cases and evaluation presented in Chapter 10. It is implemented mainly in C4++,
as this is a common choice for the motion control stack of robots, but was replaced
by Java for the behavioral part for usability reasons as part of the iteration process
proposed in Chapter 4.

7.2.1. Technology Mapping for Structural Aspects

The structural and algorithmic aspects are implemented based on a general-purpose
middleware and a robotics data type library, a rather generic component framework
and a domain-specific library that provides interfaces for the domain-specific abstrac-
tions of the metamodel presented in Chapter 5.

Many of the non-functional requirements outlined before can typically be delegated
to a (robotics) middleware. For instance, the ability to distribute or co-locate compo-
nents in the same process should be supported by a middleware framework and not be
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Domain

Types Primitive and Component Repository

Domain-Specific
Level

Component
Level

Middleware librsc librsb librst

Figure 7.4.: Technology mapping for the structural aspects with libamarsi realizing the
higher-level domain-specific aspects, libcca and librci realizing the compo-
nent level, and librsc, librsb, librst realizing the middleware level. Libraries
in light gray boxes were not implemented as part of this work.

part of the domain-specific architecture. The proposed technology mapping adopts the
event-based middleware Robotics Service Bus (RSB) [Wienke and Wrede, 2011] due
to its small footprint, extensive configurability, and openness. Additionally, RSB pro-
vides the required tools for experimental research and integration with other relevant
frameworks such as the Robot Operating System (ROS) [Quigley et al., 2009] or Yet
Another Robot Platform (YARP) [Fitzpatrick et al., 2008]; cf. [Wienke et al., 2012,
Moringen et al., 2013]. It therefore allows the technical integration of high-level com-
ponents implementing cognitive models such as cognitive levels or external perception
(FR5).

The Compliant Component Architecture (CCA) and the Robot Control Interface
(RCI) provide component-based software abstractions for experimental robot plat-
forms [Nordmann et al., 2012b]. RCI is available as a C++ library called librci,
providing interfaces and base implementations for robot control and sensing (mainly
proprioception). CCA, available as C++ library libcca, realizes the component-
based programming model introduced in Section 7.1.1 and allows implementation of
functional components.

In addition to these rather generic libraries, the C++ library libamarsi realizes the
domain-specific abstractions and interfaces, i.e. base classes and interfaces for Adap-
tive Modules, Dynamical Systems, etc., according to the programming model intro-
duced in Section 7.1.1. It therefore is the application-programming interface (API)
level that developers use to implement software for the proposed software architecture,
e.g., their Adaptive Modules or Dynamical Systems.

7.2.2. Technology Mapping for Behavioral Aspects

The technology mapping for the behavioral parts of the programming model is based
on the RSB middleware as well as the open-source SCXML execution engine Apache
Commons SCXML. The proposed technology mapping uses an SCXML engine that
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Domain-Specific

custom actions
Level

Middleware scxml librsb librst

Figure 7.5.: Technology mapping for the behavioral aspects with the custom actions
for motion primitive architectures realized based on an SCXML engine
that extends the Apache SCXML engine with connections to the [librsb
middleware and the librst type library. Libraries in light gray boxes were
not implemented as part of this work.

extends the base Apache Commons SCXML engine by connections to the RSB mid-
dleware and the librst type library. The rather generic engine that can be used for
coordination in any RSB based system is extended by custom actions and filters im-
plemented in Java to add the domain-specific Adaptive Components and Conditions
proposed in Section 5.2.

This technology mapping of the behavioral aspects is an example of the iteration
foreseen by the design process introduced in Chapter 4. In the first iterations of
the technology mapping, the SCXML code specifying the system-level coordination
was executing using the open-source Qt library scc, an SCXML compiler for the Qt
state machine framework. This was a natural choice as scc generates C++ code
from SCXML code, so mapping to the same programming language as the technology
mapping for the structural aspects. This choice, however, turned out to be disad-
vantageous, as it requires recompilation every time the SCXML code for coordination
changes.

The recent iteration using the Apache Commons SCXML execution engine directly
executes SCXML code without a compilation step. The Apache Commons SCXML
abstractions for custom actions, cf. Section 7.1.2, can be implemented in Java and can
be easily reused across different SCXML states.

7.3. Mock Platforms and Vertical Prototypes

Mainly two mock platforms and vertical prototypes were used during the design pro-
cess proposed in Chapter 4 to develop and evaluate the programming model and
technology mapping described in this chapter. They were iteratively developed and
refined in the course of the AMARSI project based on a quadruped robot simulator
mainly serving as mock platform, as well as an industrial robot simulator and hardware
that together with machine learning components served as full vertical prototype for
motion primitive architectures.
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Figure 7.6.: Oncilla roundtrip.

Having a mock platform (in terms of [Volter, 2005]) is vital for early iteration of the
technology mapping and evaluation of the chosen abstractions in the metamodel and
programming model. In robotics, this can spare a lot of time-consuming and costly
experimentation with a real robot, and additionally reduce unnecessary wear and tear.
Testing with a mock platform, e.g., a simulator, however, does not replace experiment-
ing on the real robot, which should always follow successful simulated experiments to
incorporate all factors of the real world.

Both platforms are configured so that they produce and publish their sensor values
with a fixed timing and are continuously listening for new control commands.

7.3.1. Oncilla Mock Platform

The mock platform used during development of the abstractions, programming model,
and technology mapping introduced with this thesis is the simulator of the Oncilla
quadruped robot (Oncilla), initially shown in Chapter 5, Fig. 5.1. It is particularly
well suited as platform exploration of the motion primitive domain, as it is a relatively
low-cost robot, yet, equipped with biologically leg mechanism with passive compli-
ance [Sprowitz et al., 2011]. Fig. 7.6 shows the robot hardware (mounted on a stance)
on the left and the simulated robot running on a laptop at the bottom right. The
Oncilla features three actuated degree of freedom per leg; hip angle in the for-aft di-
rection, leg length, and hip rotations in the transverse plane. It was designed for easy
access to blueprints and documentation to provide a convenient research platform for
quadruped robotics.

A robot simulator has been created with a precise description of the robot kinematics
and dynamics, including the particular parallel compliance and asymmetric actuation
of the robot’s leg mechanism, cf. [Nordmann et al., 2013a]. Fig. 7.6 shows the model
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inside the Webots simulation front end [Michel, 2004]. On top of the Webots model, a
CCA /RClI-based interface with a taxonomic representation of the robot joints has been
designed. One of its main design goal was a common abstraction between hardware
and simulation, with binary compatibility. This interface is locally accessible through
a C++ interface, using multiple inheritance to expose the node taxonomy. It is also
remotely available through the CCA component framework in C++, and through the
RSB middleware with C++, Java, Python, and Common Lisp bindings. The simulator
and the real robot share the same (local and remote) interface to allow easy and fast
transition from simulation to real-world experiments, which was an explicit design
decision [Nordmann et al., 2013a]. Both publish the sensor values with a fixed timing
so that software components of a connected component circuit can run synchronous
with the robot when being configured with an Input-Based Processing Strategy.
Coupling several components in this way can create entire effect chains to calculate
new control commands based on the latest sensor readings. All components of the
effect chain are triggered when new sensor readings are published from the robot, and
therefore executed synchronous with the robot.

7.3.2. KUKA LWR Vertical Prototype

The full vertical prototype in terms of a complete elaboration of a system that was used
during development of this work is an industrial robot system with machine learning
components for physical human-robot interaction (pHRI), termed FlexIRob, cf. [Nord-
mann et al., 2012a, Emmerich et al., 2013, Wrede et al., 2013, Nordmann et al., 2015].
The system uses a KUKA LBR IV, which is a redundant manipulator with seven joints,
allowing a manifold of configurations in joint space for a single end effector position.
The KUKA LBR IV is well suited as a vertical prototype for the motion primitive do-
main as it comes with rich sensor feedback, and an impedance-based control scheme,
resulting in active compliance of the manipulator [Bischoff et al., 2010]. A hierarchi-
cal controller [Nordmann et al., 2012a] controls the end effector position as well as
the joint configuration according to a given redundancy resolution. The redundancy
resolution is trained in pHRI and encoded in an artificial neural network (ANN). This
can also be used for an assisted gravity compensation mode [Emmerich et al., 2013]
where the end effector is freely movable and the trained ANN continuously generates
an appropriate redundancy resolution. To enable these control and interaction modes,
the system facilitates several motion primitives trained in online learning and offline
learning mode, as well as analytical motion primitives for control [Nordmann et al.,
2015].

The system is also available as a mock platform for fast and easy prototyping and ex-
perimentation, facilitating an OpenRave [Diankov and Kuffner, 2008] based simulator.
The simulator has the same (local and remote) interface as the real robot platform
to allow easy and fast transition from simulation to real-world experiments as well
as replaying real experiments in simulation. Both publish their sensor values with a
fixed timing so that software components of a circuit moving the KUKA LBR IV can
run synchronous with the robot when being configured with a Input-Based Processing
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Strategy. The KUKA LBR IV interface additionally produces a global clock signal for
the component circuit so that even components with timing-based Processing Strat-
egies are also synchronous with the robot. The KUKA LBR IV simulator produces
the timing signal based on its (virtual) simulation time so that the entire circuit can
also be executed in simulation time.

An industrial application further detailing this vertical prototype is featured in
Chapter 10.

7.4. Deployment Descriptors

Leveraging existing software components and including it in the proposed MDE ap-
proach is a requirement of this work (NFR3). It does not only help to incorporate
a large corpus of valuable legacy work and components that are hard to reverse engi-
neer in the DSLs, but it also provides flexibility to researchers and developers. When
concepts under research are not yet stabilized enough to be incorporated into the meta-
model and DSLs, the programming model can serve as a basis for compatibility with
the metamodel, but at the same time leaving the full flexibility the general-purpose
language has to offer to the developer to implement the inner workings of the subject
of research. At the same time, this can eases and therefore speeds up adoption of the
model-driven and DSL based development process as it provides the means for gradual
transition from classical development processes. This is an important requirement in
research projects, where project-executing organizations expect frequent deliverables,
demonstrators, and runnable experiments to verify the project progress.

As a means to do so, descriptions of software components, termed deployment de-
scriptors, are proposed and developed in this work. They describe the metadata, the
interface, and the deployment of software artifacts, exemplified in Listing 7.1. The
metadata aspects of the deployment descriptor, comprising of name, description, and
author(s), are mainly useful to build a repository of software components compatible
with the programming model and to provide an overview to the user.

The interface aspects of the deployment descriptor hold the necessary information
to represent the described software artifact as concept in the domain-specific language,
as exemplified in the following example box. They describe the concept as “black-box
software building blocks with explicated properties” [Schlegel et al., 2015], describing
it to the level necessary to integrate it into the language context and include it into
basic validation, e.g., type checking as discussed in Chapter 6. The third part of the
deployment descriptor describes the deployment information of the software artifact
to the level that is necessary to incorporate it into the code generation detailed in
Section 8.4. It describes the necessary headers that need to be included and the path to
the CMake configuration file, which holds more information on software dependencies,
necessary compiler flags, etc. The deployment descriptors are currently tied to the
technology mapping introduced in Section 7.2 and rely on C++ and CMake [Martin
and Hoffman, 2010] for configuration.
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Listing 7.1: Deployment Descriptor for the MVITE controller

<?xml version="1.0" encoding="UTF-8" 7>
<DynamicalSystem>
<name>MVITE</name>
<author>EPFL</author>
<description>
Modified Vector-Integration-To-Endpoint (VITE)...
</description>
<classname>MVITEDS</classname>
<headers>
<header>MVITEDS.h</header>
</headers>
<cmakeconfigfile>
/homes/anordman/prefix/share/MVITEDS/MVITEDSConfig. cmake
</cmakeconfigfile>
<cmakeprefix>MVITEDS</cmakeprefix>
</DynamicalSystem>

Software artifacts implemented against the introduced programming model, and
thereby compatible with the metamodel introduced in Chapter 5, can thereby be de-
scribed to reflect their counterpart in the metamodel. This paves the way to integrate
them into the DSL toolchain. Chapter 8 discusses this from a user’s perspective in
more detail. The following example box shows this with the running example, in
which the Dynamical System, formerly specified with a simple mathematical expres-
sion, cf. Section 6.3.2, is replaced by the MVITE controller loaded via its deployment
descriptor.

7.5. Discussion

The introduced programming model describes the API of the software architecture,
i.e. how it is used from a developer’s perspective. It provides software abstractions
for the concepts of the metamodel introduced in Chapter 5. Based on a the Oncilla
based mock platform and the KUKA LBR IV based vertical prototype introduced in
Section 7.3 an exemplary technology mapping is presented. The proposed technology
mapping realizes the structural and behavioral aspects of the domain based on a
number of open-source C++ libraries and the widely used SCXML execution engine
Apache Commons SCXML. The technology mapping underwent an iteration to raise
flexibility and ease prototyping and testing of the State Machines.

The programming model conforms to the metamodel described in Chapter 5 and
is therefore the basis for developing compatible software. An exemplary technology
mapping is provided for implementing motion primitive systems and validating them
on mock platforms and vertical prototypes. The mock platform used during the de-
velopment of this work is the Oncilla with convenient local and remote interfaces. A
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Example: Integrating a software artifact into the DSL toolchain

As a basic example, how the programming model can facilitate integration of
an existing software artifact, the Dynamical System in the running example
is switched with a Dynamical System implemented against the programming
model and described with the deployment descriptor shown in Listing 7.1. The
Dynamical System is a modification of the popular VITE controller that pro-
duces a bell-shaped velocity profile [Bullock and Grossberg, 1989].

An implementation of the MVITE controller was implemented against the in-
troduced programming model by an AMARSi project partner and described by
a deployment descriptor. Fig. 7.7 shows a DSL snippet from the running ex-
ample, where the Dynamical System is no longer specified by its mathematical
expression, cf. Section 6.3.2, but instead the MVITE controller loaded via its
deployment descriptor.

primitive joint ctrl
strategy: timed(samplerate: 1)

in: goal<leg angles>, fdb<leg angles>, <no cfg>, <no speed>, <no phase>, <no statein:
out: ctrl<leg angles>, <no stateout>

ds: MVITE vite from descriptor (::amarsi::MVITEDS)

fied Vector-Inteqgratio o-Endpoint (VITE) a MARSI dvnamical svystem.

diried ecto Integratic O-endpoint VIIE as AMAR51 a@ amica

properties: << ... >>

Figure 7.7.: The MVITE Dynamical System that was implemented against the
proposed programming model and described with the deployment
descriptor shown in Listing 7.1, replaces the formerly used Dyna-
mical System given by a mathematical expression.

KUKA LBR IV based system with motion primitives and machine learning compo-
nents for physical human-robot interaction is used as vertical prototype and will be
further detailed and discussed in Section 10.1.

The deployment descriptors allow describing existing software artifacts or new soft-
ware artifacts for research and prototyping, to be included into the domain-specific
language models. The deployment descriptors describe software artifacts on a level
that allows basic validation on a model level as well as inclusion into the targeted code
generation. This addresses an important non-functional requirement of this work, i.e.
integration of existing software artifacts into the model-driven engineering processes
(NFR3).

The final view on the levels of modeling in the proposed development process is
depicted in Fig. 7.8. The right side of the illustration shows the modeling, i.e. specifi-
cation of applications in the DSLs, as discussed before. The left side shows the software
artifacts where (existing or currently prototyped) software components that conform
to the programming model can be integrated into the DSL models and therefore in-
corporated in the automated development process through code generation, as further
detailed in the following chapter in Section 8.4. This helps answering the research
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Figure 7.8.: Levels of modeling in relation to the deployment descriptors.

questions RQ3 and RQ4 introduced in Chapter 1 if the DSL based approach can be
organized in a fashion that is open and flexible enough to allow continued research
in the domain and at the same time incorporating legacy work to lower the risk of
introducing model-driven engineering methods into robotics research.

The loose coupling of components and asynchronous communication, chosen for the
introduced technology mapping, permits fast prototyping of component-based systems
and is common practice in several robotics frameworks such as the ROS. While this
proved to be useful for practical validation of the chosen domain concepts on com-
pliant robots, it may, however, result in indeterministic behavior in the presence of
delays. For use-cases where this is harmful, e.g., rigid robots and strict requirements
for precision and timing, a different technology mapping that allows static scheduling
should be preferred [Lotz et al., 2015]. Kahn Process Networks and Synchronous Data
Flow for example exhibit deterministic behavior that does not depend on computation
or communication delays.

The language modularization and multi-staged transformations introduced in Chap-
ter 6, however, explicitly allow extending the proposed technology mapping and pro-
viding additional mappings.
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Chapter 8.
Toolchain

So far, the previous chapters examined the proposed design process from a conceptual
perspective (Chapter 2 - Chapter 4) and a developer’s perspective (Chapter 5 - Chap-
ter 7). However, while a metamodel and homogenization of the domain is a value by
itself, this work targets at supporting the development for the user, i.e. the domain
expert who wants to describe and evaluate a motion primitive architecture or experi-
ment. Formulation and execution of architectural hypotheses should be easy and fast
for a domain expert without the need to become an expert in software engineering or
general-purpose languages (GPLs) like C++, Java, or Python.

Based on the introduced metamodel and the domain-specific languages (DSLs) de-
tailed in Chapter 6, the formulation of these architectures can be done on a much
higher level of abstraction with languages that make the concern of the domain much
more explicit. To evaluate these architecture hypotheses on robot platforms, either in
simulation or in hardware, their specification has to be made executable. This chapter
introduces an integrated development environment (IDE) that allows specifying an
architecture hypothesis on a high level of abstraction and making it executable by
means of code generation. The IDE together with the DSLs provide features that
are typical for IDEs, such as rich-text editing, syntax highlighting, code completion,
but additionally leverage the semantics DSLs specification for model validation, code
generation, a component repository, and domain-specific visualization.

The IDE-typical features are briefly discussed in the context of this work in Sec-
tion 8.1. The DSL specific features of the IDE are discussed in more detail in terms
of validation in Section 8.2, a domain-specific component repository in Section 8.3,
and generation of system visualization and code generation in Section 8.4. Section 8.5
concludes how all of this is deployed and shipped together with the software architec-
ture introduced in Chapter 7 to provide a domain-specific development environment
for specification and execution of motion primitive architectures.

8.1. Integrated Development Environment

One means to provide support during the development process is to supply a rich IDE
for the introduced DSLs. IDEs offer comprehensive help to programmers for software
development, usually consisting of editors, code completion and syntax highlighting,
and build automation tools. The language workbench Jetbrains Meta-Programming
System (MPS) [Jetbrains.com, 2003] used in this work supports many of these aspects
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Figure 8.1.: Customized, MPS-based IDE themed for the AMARSi project bundled
with the languages introduced in Chapter 6.

and allows bundling and deploying a customized DSL IDE together with language
plug-ins.

This customized DSL IDE can be bundled and shipped to the domain expert to
explore the design space of the motion primitive architecture domain, while at the
same time restricting them to the consolidated abstraction and therefore maintaining
compatibility and composability of the motion primitive architectures. Fig. 8.1 shows
a screenshot of the “AMARSi Motion Primitive Workbench”, a customized IDE as
it was bundled and customized during the AMARSIi project. The IDE was not just
themed in the project context, but was bundled with the languages introduced in
Chapter 6. As it is based on the free Jetbrains Meta-Programming System, it can
be distributed as free software and is platform-independent, i.e. available for Linux,
Windows and Mac. Fig. 8.1 shows a screenshot on a Mac computer.

Fig. 8.2 shows the editing view of a recent version of the DSL IDE. The upper
left part shows the logical view of the project, which contains one solution! with the
language fragments. The upper right depicts the projectional editor, showing the
textual projection of a Coordination DSL fragment. While it looks like a textual
editor, editing actually operates on the abstract syntax tree (AST), as explained in
Section 6.1. The lower left part of the screenshot shows the AST of the current
language fragment in the Node Ezxplorer.

L«Solution” is MPS’ term for the collection of language fragments that describe an application.
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Figure 8.2.: Screenshot of the DSL IDE editor view. The upper left part shows the
logical view of the project; the upper right depicts the projectional editor.

Since the editor is just manipulating the AST and the concrete syntax is just a
projection, the editor actually enforces syntactical correctness by not allowing to ma-
nipulate text in a way that does not comply with the textual projection of the AST.

8.2. Validation

One important advantage of the semantic abstraction when using domain-specific lan-
guages to express applications is the possibility to validate its underlying models on
the semantic model-level, where typically GPL programs can just be validated on a
syntactical level. Validation is based on the constraints and the type system included
in the DSLs as discussed in Section 6.3. MPS validates these constraints dynamically
and instantaneously during specification.

Fig. 8.2 shows a basic example where the user is warned about a type incompatibility
in a Primitive Coordination DSL action. The PublishToSpace action that is part of
the Primitive Coordination DSL validates the data type to be published, JointAngles
in the example, and the data type of the Space that it is published to. This validation
is across language borders and across different viewpoints. The Space and Space Type
are part of the Motion Primitive DSL, the data type is part of the Types DSL, and
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both are defined in the structural viewpoint of the system. The validation rule is part
of the Primitive Coordination DSL and therefore part of the behavioral viewpoint, but
can follow the reference to the Space in the structural viewpoint.

This is an example of a validation step that helps avoiding expensive debugging
at run time and therefore repeating costly experiments. This concrete validation
prevents an error that would not be detected by a compiler, but would lead to an
error during run time and is hard to pin down and debug. If executed with the
technology mapping introduced in Chapter 7, the JointAngle would be serialized and
sent over the network with the Robotics Service Bus (RSB) middleware and then
tried to be deserialized on the receiving side. The receiving process would assume a
different data type according to the Space Type, which would most probably result
in a C4++ segmentation fault. The constraints included in the DSLs can detect this
error, providing valuable development support for the user.

8.3. Component Repository

The deployment descriptors introduced in Section 7.4 that describe existing software
artifacts implemented against the programming model can be used to provide a repos-
itory of software components compatible with the metamodel and the DSLs.

While MPS’ default format to store language fragments and models is an eXtensible
Markup Language (XML) based format, it provides the so-called Stubs mechanism to
define custom formats to persist and load models. By using this stubs according to
the XML based format introduced in Section 7.4, MPS can read these descriptors and
instantiate language models according to the software artifacts they represent.

Fig. 8.3 (upper left) shows how this looks like to the user of the DSL IDE. The
models instantiated from the deployment descriptors are made available in a repository,
available in the file system and loaded from deployment descriptors. Since they are
available as language concepts, they are available in the code completion. Fig. 8.3
shows an example, where an Adaptive Module is added to a Reaching Controller and
in addition to the default Adaptive Module concept, the specific Adaptive Modules
from the repository are suggested. Accordingly, Dynamical Systems and Criterions
from the repository are suggested when editing the respective parts of the model.

A similar mechanism was used and implemented outside this work to create all Data
Types of the Types DSL, by parsing the data type descriptions of the Robotics System
Types (RST) library.

8.4. Code Generation

In addition to supporting the user with modeling motion primitive architectures and
motion primitive based applications, one of the main goals of this work is to make these
models executable on robot platforms, i.e. support the software development through
automation. There are different usage patterns to achieve this with DSLs [Mernik
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Figure 8.3.: Using models from the repository in the Motion Primitive Workbench.
The models are loaded from the repository and available as language ele-
ments (left), and thereby available in the editor (right).

et al., 2005, Spinellis, 2001]. The toolchain introduced with this work uses code gener-
ation in order to make the models executable for the reasons discussed in Section 6.3.
Code generation in this work is realized by chaining model-to-model transformations
(M2Ms) and model-to-text transformations (M2Ts). While this the transformations
are already discussed from a developer’s perspective in Section 6.4, this section now
discusses generation of all software artifacts provided to the user of the toolchain.

In MPS, code generators are defined as part of the DSL transformations by either
defining M2M transformations to MPS base languages or with the TextGen aspect, as
discussed in Section 6.4. Fig. 8.4 provides an overview of the M2M and M2T trans-
formations. Gray boxes and dashed arrows refer to the M2M transformations already
discussed in Section 6.4.2, black boxes and solid arrows show the M2T transformations.
The adapter languages (cf. Section 6.3) are left out for the sake of clarity.

8.4.1. System Visualization

The first type of generated artifacts during development of the presented approach was
system-level visualization. This served as an early validation of the introduced models
and provided a good overview on existing motion primitive architectures modeled with
early iterations of the introduced metamodel and DSLs as demonstrated by Nordmann
and Wrede [2012].

Code generation for the system visualization is based on the Graph DSL, to which
M2M transformations exist from the Motion Primitive DSL as well as from the Coordi-
nation DSL as shown in Fig. 8.4 so that a graph-like system visualization is generated
representing the Circuit as well as the State Machine. The Graph DSL generator
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Figure 8.5.: Auto-generated visualization of the coordination of the running example.
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therefore targets MPS’ XML base language, similar to the generation of State Chart
XML (SCXML) as discussed in Section 6.4.3.

Result of this code generation step are two GraphML files, the first one visualiz-
ing the structural architecture, the Adaptive Components, Adaptive Modules, and
Spaces, the second one visualizing the behavioral aspects, the State Machine, its
States and Transitions. As an example, Fig. 8.5 shows the auto-generated visual-
ization of the coordination of the running example. The white boxes represent the
composite states, the blue boxes the states. Layouting was done with yed, a free-to-
use GraphML editor that provides powerful auto-layouting features.

8.4.2. Executable code

The different code generators generating the executable GPL code act as the imple-
mentor of the components [Volter et al., 2013] so that the motion primitive experts do
not have to do the implementation by themselves. For this reason, the code generators
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<rsb:listener rsb:type="rst.flexirob.devices.RobotState" rsb:scope="$[scope]"s
<rsb:filter rsb:class="mpr.scxml.RobotConvergedFilter"s
<affected=$ [affected|</affected>
</rsh:filter>
</rsh:listener>

Figure 8.6.: MSM transformation rule of the Primitive Coordination DSL for the
Robot Converged Condition.

proposed in this work target the generation of the entire executable code so that no
additional manual implementation has to be done (NFRS).

8.4.2.1. SCXML Code

Generation of SCXML code from the Coordination DSL is already introduced in Sec-
tion 6.4. In the presented toolchain, however, the user designs the coordination by
additionally using the Primitive Coordination DSL for the motion primitive specific
aspects. Fig. 8.6 shows an exemplary transformation rule for one of the Primitive
Coordination DSL Conditions: RobotAffected. When the code generator transforms
the Coordination DSL model, the State Machine with the contained States, conc-
Transs and Dynamical Systems to SCXML, it will find and execute the according
transformation rules when a Primitive Coordination DSL concept is found.

Result of this code generation step is an SCXML file, which performs the intended
coordination of the motion primitives when executed with the SCXML engine intro-
duced in Section 7.2.2. The rule shown in Fig. 8.6 reduced the Robot Converged
Condition to SCXML code that is configured to receive a particular Data Type over
a particular Scope, and checking it with the RobotConvergedFilter, which is part of
the SCXML engine.

8.4.2.2. C4++ Code

The generators for the executable C++ code are M2T transformations as part of the
Component DSL. These generators generate two different kinds of C++ artifacts: i)
C++ components representing Adaptive Modules, Criterions, Mappings, and Dyna-
mical Systems, each with a header and an implementation file, and ii) a C++ main
file instantiating and configuring the components properly.

The Circuit is mapped to the C++ main file instantiating and configuring its con-
tained components properly. Since the Motion Primitive DSL model is already mapped
to Component DSL models as introduced in Section 6.4, the concepts are already quite
close to the generated code so that the M2T rules are not complex. Fig. 8.7 shows a
small snippet from the TextGen rules that generate the component instantiation and
configuration. Code generation at this point is mainly looping over all components of
the Component DSL model, mixing static C++ code and properties from the Com-
ponent DSL model, e.g., component names, port names and types, and scopes. For
the models from the component repository not only the component instantiation and
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foreach component in node.components {
append { } {ComponentPtr } ${component.getComponentName()} { = ComponentPtr(new } ${component.getClassname()}

{("} ${component.name} {"));} \n;
append { } ${component.getComponentName()} {->setProcessingStrategy(} ${component.strategy.getInitializer()}
153 \n;

foreach port in component.inputports {
append { } ${component.getComponentName()} {->configureInputPort("} ${port.name} {", PortConfiguration::}
${port.config} {("} ${port.getScopeString()} {"));} \n;

foreach port in component.outputports {
append { } ${component.getComponentName()} {->configureOutputPort("} ${port.name} {", PortConfiguration::}
${port.config} {("} ${port.getScopeString()} {"));} \n;

1
s

Figure 8.7.: Snippet of the TextGen rules for C++ main file generation. The M2T
transformation loops over all components of the Component DSL model,
mixing static C++ code and properties from the Component DSL model,
e.g., component names, port names and types, and scopes.

configuration is generated, but also preprocessor commands to include the required
headers according to the specification inside their deployment descriptors.

Similar M2T transformations transform the Adaptive Modules, Criterions, Map-
pings, and Dynamical Systems that are specified in the DSL into according C++
headers and implementation files. All models from the component repository are
ignored at this point, as their just need to be instantiated and configured.

The Adaptive Modules, Criterions, and Mappings are transformed into compo-
nents inheriting from according libamarsi abstractions; cf. Section 7.2.1. These files
contain the business logic, e.g., the component for the Adaptive Module contains the
C++ code to handle state changes, incoming data, forwarding it to the Dynamical
System and publishing the output of the Dynamical System. The Dynamical Sys-
tem is transformed to a C++ class. The code generated from the Dynamical System
Expression must fit into the surrounding C++ code, which is achieved fitting the gen-
erated C++ code into the code skeleton provided by the libamarsi Dynamical System
interface.

8.4.2.3. Project Configuration

To be able to easily compile and execute the generated C++ code, according CMake
files are generated to check dependencies, build, and install the experiment specified
by the motion primitive expert. This is done by code generators from the Project
DSL.

The M2M transformations from the Motion Primitive DSL to the Project DSL
already include all dependencies from the component repository elements according to
their deployment descriptors, which specify their CMake dependencies and file system
paths. Proper M2T transformations transform the Project DSL model into CMake
files that model all dependencies and include the paths of the software artifacts from
the component repository.
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Figure 8.8.: Toolchain and software builds on continuous integration server. The illus-
tration shows the auto-generated dependency graph of the DSL CI jobs.
Note that the arrows point into the direction of the build flow, so that the
dependency is at the source of the arrow.

8.5. Deployment

The Motion Primitive Workbench introduced in this chapter is bundled and shipped
to the domain expert to explore the design space of the motion primitive architec-
ture domain, while at the same time restricting them to the consolidated abstraction
and therefore maintaining compatibility and composability of the motion primitive
architectures.

To ship the IDE, the DSLs and the accompanying software architecture, e.g., the
programming model and technology mapping introduced in Chapter 7, in a consistent
manner, all three aspects are integrated on a continuous integration (CI) server. The
CI server continuously fetches the DSLs from their repositories, build them, integrating
them with an MPS installation and providing the entire package for downloading.
Fig. 8.8 shows the dependency graph of the language builds and builds of the DSL
IDEs:

e The *-dsl-master jobs build the DSL plug-ins for MPS. When they are built suc-
cessfully, downstream languages, i.e. languages that depend on the respective lan-
guage, are triggered automatically so that incompatibilities between languages
become visible immediately. This is illustrated in Fig. 8.8 showing a rendering
of the dependency graph of the language jobs. The graph was automatically
generated by the CI server.

e The *IDE-linuz-master jobs build the DSL IDEs that include the language
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plug-ins and additionally some optional theming as shown in the beginning of
this chapter in Fig. 8.1 (manually highlighted in Fig. 8.8 (gray) for the sake of
visibility). The IDEs built by these jobs are custom MPS based IDEs in the
form of Java applications ready to run on Linux.

The same CI server continuously builds the software libraries of the technology
mapping introduced in Chapter 7. The library jobs run static code analysis and
unit tests, and trigger package jobs? when the tests run without errors. This allows
providing binary downloads of the introduced toolchain and software packages of the
targeted technology mapping.

Note, that the language modularization allows providing three different DSL IDEs.
The primitive-coordination-IDE-linuz-master builds the Motion Primitive Workbench
that is detailed in this chapter and has all DSLs proposed in this work included. The
cca-coordination-IDE-linuz-master builds a DSL IDE with all DSLs included, except
the Motion Primitive DSL and Primitive Coordination DSL. This IDE provides the
same technical features as the Motion Primitive Workbench such as rich text editing
of structural models and behavioral models, validation, and code generation, but is
targeted at a developer of generic Compliant Component Architecture (CCA) based
systems without using the motion primitive models and features. Similarly, the rsb-
coordination-IDE-linuz-master builds a DSL IDE with all DSLs included, ezcept the
Motion Primitive DSL, Primitive Coordination DSL, Component DSL, and Compo-
nent Coordination DSL. This provides an IDEs targeted at developers to ease modeling
of generic RSB-based systems and their coordination.

While all introduced DSLs are available in the Motion Primitive Workbench, not
necessarily all of them have to be used in a modeling project. The proposed language
modularization, extension, and composition (LMEC) detailed in Section 6.2 was ex-
plicitly designed so that a subset of the languages can be used without dependencies
to unused languages.

8.6. Discussion

The toolchain presented in this chapter shows one of the tangible results of the design
process proposed in Chapter 4 that is exposed to the user, i.e. the domain expert to
be supported in the development of motion primitive architectures. It integrates the
DSLs, their editing environment, dynamic constraint checking and model validation,
M2M, and M2T transformations for code generation and visualization. The toolchain
is available together with the software architecture that is targeted by the code gener-
ators that are delivered with the DSLs. It is available for download from a CI server
that also provides the DSL IDE itself for download, together with software packages
of the targeted technology mapping.

Both together make the model-driven engineering (MDE) process that is targeted
by the design process introduced in Chapter 4 available for the domain expert to ease

2Currently only Linux packages for two recent Ubuntu versions in 32 bit and 64 bit.
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and automate development and testing of motion primitive architectures. The author
argues that the consistent metamodel available with the DSLs provides the basis for
combination of motion primitives while at the same time the programming model and
the deployment descriptors provide enough flexibility for research to explore the design
space of motion primitive architectures. The entries of this model repository can be
used inside the DSL specification and reference software artifacts outside of the MPS
environment, which is a non-functional requirement for incorporating and leveraging
legacy code (NFR3).

The model-driven engineering process enabled by the DSLs and the accompanying
Motion Primitive Workbench is exemplified and further discussed in the following
chapter.
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Chapter 9.
Modeling Motion Primitive Architectures

The toolchain introduced in Chapter 8 allows development and easy editing of mo-
tion primitive architectures based on the proposed domain-specific languages (DSLs)
and the accompanying software architecture introduced in Chapter 7 makes these
models executable. The packaging and deployment described in Section 8.5 makes both
easily accessible for the user, i.e. the motion primitive expert. This chapter introduces
the intended model-driven engineering (MDE) process for the domain expert, i.e. the
workflow to develop, execute, and validate motion primitive architectures based on
the proposed languages and toolchain. This workflow is termed Hypothesis Test Cycle
in the course of this work in accordance with Dittes [2012].

Several of the MDE approaches discussed in Chapter 2 discuss the intended work-
flow a user follows in their approach. Model-driven engineering workflows targeted
to robotics typically support robotics software development process in different stages
and levels of abstractions. Typically starting with functional modeling, deployment
to the robotics platform, execution, and maintenance. Three recent examples of MDE
processes in robotics are now briefly discussed before introducing the workflow pro-
posed in this work: the Robot Application Development Process (RAP) [Kraetzschmar
et al., 2010] of the BRICS project, the SafeRobots framework [Ramaswamy et al.,
2014a], and V3CMM [Alonso et al., 2010].

Typical first stages of the development process usually relate to modeling of the
problem space, its constraints, and requirements, which the Model Driven Architec-
ture (MDA) refers to as computation independent model (CIM). In BRICS RAP for
example, the scenario-building phase defines the task of the robot, environment fea-
tures, constraints and characteristics. An additional functional design phase derives
hardware requirements and top-level functionalities. In the SafeRobots framework [Ra-
maswamy et al., 2014a], the problem modeling phase formally specifies application-
specific functional and non-functional requirements, the context or the environment.

A typical next activity is the functional modeling, i.e. knowledge modeling or solu-
tion space modeling complying with the functional requirements. This is considered
the platform independent model (PIM) in MDA. BRICS RAP distinguishes platform
(hardware) modeling and software modeling. The platform-building phase determines
and configures the robot hardware, the capability-building phase designs, specifies and
develops the actual software components. The following system deployment phase
combines these components into a complete application. In the SafeRobots frame-
work, this phase is termed problem-specific knowledge modeling. It models the solution
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space based on the functional requirements from the previous modeling phase. The
development process of the V3CMM approach mainly affects this functional modeling
phase, comprising the structural modeling, the behavioral modeling, and the algorith-
mic modeling.

After the functional modeling, the next steps of development phases are usually con-
sidering the non-functional requirements and bind the models to the actual (hardware
or software) platform. In BRICS RAP, this is part of the system deployment phase
that maps the application to computational units, allocates resources, and configures
the launch management. In the SafeRobots framework, this is done in the problem-
specific concrete modeling phase that reduces the functional model from the previous
development phase according to the non-functional requirements and non-functional
properties such as timings, confidence, resolution levels, etc.

The next development step to produce executable systems is the code generation
or interpretation phase, targeting the runtime of the system. BRICS RAP explicitly
mentions additional development phases targeted to runtime, modeling aspects for
benchmarking, stress testing, and security checks, as well as an explicit maintenance
phase for system testing, tuning, and extension.

The MDE process proposed in this work is detailed in the course of this chapter and
discussed with respect to the three exemplary development process introduced above.

9.1. Hypothesis Test Cycle

The development process proposed in this thesis is termed Hypothesis Test Cycle and
is targeted to efficiently design and evaluate motion primitive architectures in order
to ease and speed-up research for experts of the domain. The basic idea is that a
domain expert formulates a hypothesis of a combination of motion primitive to yield
rich motion skills, and verifies it on robot platforms.

Similar to the related approaches discussed above, it consists of functional modeling,
non-functional modeling and code generation phases, all supported by the toolchain
introduced in Chapter 8. Additionally to the related approaches discussed at the be-
ginning of this chapter, the functional modeling phase in this work optionally consists
of loading and including existing software artifacts into the domain models from the
component repository, as described in Section 8.3.

Fig. 9.1 shows a visualization of the proposed Hypothesis Test Cycle, which is de-
tailed in the following sections. The illustration shows the circular process of modeling
a motion primitive architecture hypothesis, code generation, experimental verification,
and — depending on the result — modifying or refining the initial hypothesis. The
rounded rectangles in Fig. 9.1 indicate activities; the regular rectangles indicate mod-
els or artifacts. The modeling activities are annotated with the DSLs used in the
respective activity.

The Hypothesis Test Cycle starts with a hypothesis of the domain expert concern-
ing a certain motion primitive architecture that combines a set of motion primitives
to perform rich motion skills to fulfill a given task. The DSLs introduced in Chap-
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Figure 9.1.: The iterative Hypothesis Test Cycle uses the proposed DSLs to model a
motion primitive architecture hypothesis for a certain task. Rounded rect-
angles indicate activities; regular rectangles indicate models and artifacts.

ter 6 allow platform-independent specification of the motion primitive architecture.
It usually starts with the modeling of the structural and computational aspects, fol-
lowed by modeling of the behavioral aspects. This is both detailed in Section 9.1.1.
A next step is the specification of the non-functional aspects to bind the experiment
to a certain software and robotics platform. This is also supported by DSLs, as in-
dicated in Fig. 9.1 and may be conducted by a different person, filling the role of a
robotics or system expert. After the code generation step, performed by the model-to-
model transformations (M2Ms) and model-to-text transformations (M2T's) introduced
in Section 6.4 and Section 8.4, the experiment can be executed in simulation or on
hardware to validate the initial motion primitive architecture hypothesis.

Experiment results may lead to iterative adaption and refinement of the hypothesis
models, which is one of the requirements for this process from the research context
(NFR4) where hypotheses are usually not correct in the first attempt and need to be
adapted or even replaced.
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9.1.1. Platform-Independent Modeling

The functional modeling in the domain of this thesis is supposed to be done by the
domain expert, in this case the motion primitive expert who wants to design a motion
primitive architecture for a certain task and evaluate it on a robot. The motion prim-
itive expert creates a new solution in the introduced workbench that provides access
to all DSLs and transformations introduced in Chapter 6 and the entire tool support
introduced in Chapter 8.

The following order of functional modeling steps is not strict and can be mixed and
iterated during the design. It is, however, reasonable to start with the structural and
algorithmic models before designing the system coordination. This is done by creating
a new Circuit that is the root concept of the structural model and a container for all
Adaptive Components, Adaptive Modules, and Spaces.

Motion Primitives To start the structural modeling, as a first step the Adaptive
Components and Adaptive Modules to fulfill the intended movements and motion
skills are designed with the Motion Primitive DSL in terms of Adaptive Components
and Adaptive Modules. Adaptive Modules can be selected from the component
repository in Section 8.3 or specified within the models. Selection of the motion prim-
itives is depending on the targeted performance such as robustness to perturbations,
input and output dimensionality, or learning capabilities, which lies in the competence
of the domain expert.

The toolchain provides the option to either select an existing dynamical system from
the repository or specify it with the according mathematical expression. In the same
way, when adding a new Adaptive Module, the user is provided with context help
offering to create a new Adaptive Module with the a custom Dynamical System, or
to load an Adaptive Module from the repository with an already built-in Dynamical
System, as exemplified in Section 8.3.

For instance, in the running example introduced in Chapter 5, dynamics of the foot
placement motion were first specified in-line with the algorithmic models and in a
second design step replaced by the dynamics of the MVITE [Bullock and Grossberg,
1989] controller from the component repository.

The Adaptive Modules are created inside a specific Adaptive Component type, e.g.,
a Reaching Controllers, a Tracking Controllers, or a Pattern Generator, depending
on their function inside the intended architecture. Depending on the Adaptive Com-
ponent type, Criterions may be added to allow coordination based on the Adaptive
Component Status.

Dynamical Systems If a Dynamical System inside an Adaptive Module is not
loaded from the repository, it can be specified inline using the Dynamical System DSL.
Inputs and Outputs of the Adaptive Module can be used inside the mathematical
expression of the Dynamical System as exemplified in Section 6.3.2.
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Space Types and Spaces As specification of the Adaptive Modules and Adaptive
Components, definition of Space Types is required to be created to allow connection
of the motion primitive. These are added as root concepts from the Motion Primitive
DSL and specified by their Data Type and dimension. The required data types are
available through the integrated Types DSL.

Definition of the Space Types is a precondition for the specification of the concrete
Spaces to handle communication between the Adaptive Components and Adaptive
Modules. Often, several Spaces of the same Space Types are required, e.g., for sensor
measurements (the robot status) as well as commands sent to the robot, or different
parts and limbs of the robot.

Connect Motion Primitives Once the Spaces are established, the different parts of
the architecture are connected through the spaces, e.g., connections from the control
Output of an Adaptive Module to a Space, or outgoing connections from Spaces to
goal or feedback Inputs of the Adaptive Modules.

At this point of the design process, type incompatibilities between Adaptive Mod-
ules and connected components might occur that the Motion Primitive Workbench
continuously warns about while designing, as shown in Section 8.2. In this case, it
might be necessary to equip the Adaptive Components with additional Mappings
to resolve the type incompatibility. An example of this case was introduced in the
running example, where the foot goal is given in Cartesian coordinates, but the mo-
tion primitive operates in the joint space. Fig. 9.2a shows how the user is warned
about this and Fig. 9.2b shows how introduction of an appropriate Mapping (Inverse
Kinematics) solves this issue.

Another case requiring additional Mappings added to Adaptive Components is
anticipated from the domain analysis. Motion primitives and their machine learning
capabilities might be robust enough to work in different contexts and operate in differ-
ent Space Types, e.g., joint space or Cartesian space, joint angles or joint velocities,
which can be achieved by adding the corresponding Mappings.

Design the State Machine When the motion primitive are specified, their combina-
tion and coordination needs to be designed. This is done with the Coordination DSL
designing the different States and their Transitions. It usually is helpful to introduce
Composite States to capsule different high-level phases of the experiment, e.g., train-
ing phases and phases in which movements are reproduced bases on the training, as
exemplified in Chapter 10.

Link the State Machine to the Adaptive Components and Spaces When the States
and their Transitions are designed, the extensions from the Primitive Coordination
DSL allow connecting these to the structural model, i.e. the Adaptive Components
and Spaces.

Actions inside the States can organize learning and execution phases of the existing
motion primitives or publish goals for movement. Conditions for the Transitions
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Space left fore leg command <leg angles>
connection ingoing from ctrl of PlaceFoot.jointctrl

Warning: Type of space and input port doesn't seem to agree. (rst.geometry.Translation vs. rst.kinematics.JointAngles)
connection outgoing to goal of PlaceFoot.joincctrl

/ Foot Placement with VITE or DynSys Expression
Reaching Controller Place Foot {

primitive joint ctrl
strategy: timed(samplerate: 1)
in: goal<leg angles>, fdb<leg angles>, <no cfg>, <no speed>, <no phase>, <no statein>
out: ctrl<leg angles>, <no stateouts
ds: <{ctrl} = {fdb} + 0.1 * ({goal} - {fdb})>
properties: << ... >>

criterion : TranslatoryCriterion distance from descriptor (::cca::component::TranslatoryCriterion)

strategy: timed(samplerate: 1)

goal: ingoal<<::rci::Translation>>feedback : infdb<<::rci::Translation>>

status: status<rst<rst.motioncontrol.MotionStatus>>

properties: {calculate_x=true} {calculate_y=true} {calculate_z=true} {threshold_x=0.01} {threshold_y=0.01}
{threshold_z=0.01}

map goal input: <no map_goal> map feedback input: <no map_ fdb> map control output: <no map ctrls}

(a) In the running example, the Cartesian left fore foot goal Spaces is connected with the
goal Input of the Adaptive Module. The Adaptive Module, however, operated in joint
space, which results in a warning about incompatible Data Types.

Space left fore leg command <leg angles>
connection ingoing from ctrl of PlaceFoot.jointctrl

Space left fore foot goal <foot position>
connection outgoing to goal of PlaceFoot.jointctrl

/ Foot Placement with VITE or DynSys Expression
Reaching Controller Place Foot {

primitive joint ctrl
strategy: timed(samplerate: 1)
in: goal<leg angles>, fdb<leg angles>, <no cfg>, <no speed>, <no phase>, <no statein>
out: ctrl<leg angles>, <no stateouts
ds: <{ctrl} = {fdb} + 0.1 * ({goal} - {fdb})>
properties: << ... >>

criterion : TranslatoryCriterion distance from descriptor (::cca::component::TranslatoryCriterion)
strategy: timed(samplerate: 1)
goal: ingoal<<::rci::Translation>>feedback : infdb<<::rci::Translation>>
status: status<rst<rst.motioncontrol.MotionStatus>>
properties: {calculate_x=true} {calculate_y=true} {calculate_z=true} {threshold_x=0.01} {threshold_y=0.01}
{threshold_z=0.01}

Cartesian Trans ory C
map goal input: Oncilla Inverse Kihematics invkin from descriptor (cca::component::Oncillalnvkinleq)
in: in<rst<rst.geometry.Translation>>
out: out<rst<rst.kinematics.JointAngles>>
properties: << ... >>

Inverse Kinematics for

Criterion

7 e
t leg.

I for Oncilla qu ot g
map feedback input: <no map fdb> map control output: <no map ctris}

(b) Adding an Oncilla Inverse Kinematics Mapping to the Reaching Controller solved the

Data Type incompatibility, cf. Fig. 9.2a as the Cartesian goal Input is now automatically
mapped to the joint space.

Figure 9.2.: In the running example, the Cartesian left fore foot goal Spaces is in-
compatible with the Adaptive Module operating in joint space resulting
in a warning. Adding an Oncilla Inverse Kinematics Mapping to the
Reaching Controller solves the Data Type incompatibility.
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Space all legs status <legs angles>
connection outgoing to feedback of Trotting.walking
->/oncilla/status/position/ally

Space all legs command <legs angles>
connection ingoing fro Intentions ing.walking

¢ Scope Mapping »

Figure 9.3.: Space annotations of middleware scopes. The annotations are considered
by the code generators to configure the middleware accordingly.

between the States can be based on convergence of the motion primitives, i.e. the
Adaptive Component Status, on Adaptive Modules changing their lifecycle state, or
the robot being interacted with, cf. Section 6.3.4.

9.1.2. Platform-Specifc Annotations

With the functional modeling done, the architecture for a motion primitive experiment
is functionally modeled, but is not bound to any platform yet (NFR6). In order to do
so, non-functional aspects have to be added that influence the M2M transformations
to the platform specific model (PSM). The transformations configure the underlying
component model and middleware so that the architecture is correctly deployed to the
target platform and communication between the motion primitive and the robot is
established.

This task is not necessarily done by the domain expert, the motion primitive ex-
pert, but intended to be done by a system integrator. As it is implemented as DSL
annotations, it is well separated from the functional modeling.

Configure Scopes Several Adaptive Modules rely on extensive proprioceptive feed-
back from the robot or generate control targets for the robot. Both is organized via
Spaces, but these are not yet connected to the robot.

To connect the Spaces to the actual robot platform, the underlying middleware
that handles communication of these scopes needs to be configured to use the correct
scopes'. Note that this assumes that the robot is available for our technology mapping,
i.e. allowing communication over RSB [Wienke and Wrede, 2011]. This was done
for several robot platforms in the course of the AMARSi project, e.g., the Oncilla
quadruped robot (Oncilla), the KUKA Lightweight Robot IV (KUKA LBR IV), and
the iCub humanoid robot (iCub) within the AMARSI project. Interoperability features
of RSB allow connecting various other frameworks such as YARP and the Robot
Operating System (ROS) [Wienke et al., 2012].

Fig. 9.3 shows how this annotation looks like. The Spaces of the motion primitive
architecture that constitute the interface to the robot, either reading its sensor status

1Scopes are identifiers of concrete communication channels in the Robotics Service Bus
(RSB) [Wienke and Wrede, 2011] that was chosen for the technology mapping.
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Space left fore leg status <leg angles>
connection outgoing to fdb of PlaceFoot.jointctrl
(remote) ->/oncilla/status/pos/Lf/

Space left fore leg command <leg angless>
connection ingoing from ctrl of PlaceFoot.jointctrl

(femote]) ->/oncilla/cmd/pos/1f/

@ DEFAULT (BaseConcept in CCA)

SP:(n LOCAL (BaseConcept in CCA)>
@ LOCALREMOTE ~ (BaseConcept in cca)@t-Jointctrl
n’ REMOTE (BaseConcept 1n CCA) B cion

Figure 9.4.: Space annotations of transport configuration. The annotations are con-
sidered by the code generators to configure the component framework
accordingly.

or setting commands, are annotated with the according scopes of the robot interface.
Fig. 9.3 shows a DSL fragment from the running example with one already annotated
Space and another Space currently being edited. The annotation is considered by the
code generators to configure the middleware to receive the JointAngles status that
the Oncilla continuously streams over the scope /oncilla/status/position/all.

Configure Transports By default, the component Circuit that the modeled motion
primitive architecture is mapped to runs in a single process according to the chosen
technology mapping (cf. Section 7.2). This is feasible for smaller Circuits, but be-
comes infeasible when the Circuit grows and contains heavy computation units such
as larger machine learning parts. In this case, the transport annotations provide con-
figuration hints to the underlying component framework that certain communication
channels are configured to use a remote transport so that they can be distributed to
external machines, i.e. different Circuits running in different processes and potentially
on different machines distributed in a network.

Fig. 9.4 shows how this annotation looks like. The Component DSL defines transport
configuration to determine, if communication between the input and output Ports, cf.
programming model in Section 7.1.1, is only locally, e.g., in-process communication
in the technology mapping introduced in Section 7.2, or remotely over the network.
The annotations allow specifying the transport configuration for Spaces as shown in
Fig. 9.4 to be either only remote, only local, local and remote, or the system default.
The M2M transformations that map the Motion Primitive DSL models to the Compo-
nent DSL models respect those annotations and generate the Component DSL models
accordingly.

In the running example, the Spaces that represent the connection to the robot
are configured to use remote communication, as shown in Fig. 9.4 for one of the
Spaces. This causes the status Spaces, e.g., left fore leg status to receive the robot
status remotely, in the example shown in Fig. 9.4 all Joint Angles sent over the scope
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/oncilla/status/pos/1f.

9.1.3. Code Generation

When the functional modeling and non-functional modeling is done, code generation
makes the models executable by mapping them to general-purpose language (GPL)
code through the M2M and M2T transformations introduced in Section 6.4 and Sec-
tion 8.4 respectively. As an early step to check the modeled motion primitive architec-
ture for plausibility, performing a visual check of the system visualization proved to
be very useful in the Hypothesis Test Cycle. Missing connections between Adaptive
Modules, which is often task-dependent and not easy to detect by the model-checking,
can often easily be spotted in the system visualization.

In addition to the system visualization, executable GPL code is generated, as well
as the CMake configuration to build the executables, as detailed in Section 8.4.

9.1.4. Execution

While the motion primitive (MP) expert usually performs a visual check of the modeled
motion primitive architecture, a system integrator or robotics expert might actually
build the executable code, compile, and execute the experiment.

Execution of experiments in robotics is often a complex and labor-intensive task.
Reducing the necessity for hardware experiments is therefore a common goal in robotics
(NFR9). This is especially true for early iterations of an experiment since potential
errors can be dangerous and could lead to damage.

First experiments should therefore be executed in simulation if possible. This can

often serve as a further step to check the motion primitive architecture hypothesis
without the costs and effort of a real robot experiment.

Since the robot interfaces introduced in Section 7.3 provide the same interface for
the simulator and the hardware, transition to the hardware is relatively easy once the
experiment was successful in simulation.

This can even be exploited when experimenting with motion primitive architectures
that include physical human-robot interaction (pHRI), where experimentation cannot
easily be done purely simulation as the interaction inputs and triggers are missing.
In this case, a single experiment can be conducted on the real robot, while the mid-
dleware tooling [Moringen et al., 2013] records the experiment and the experiment
data including the pHRI. Afterwards the experiment can be conveniently replayed in
simulation due to the same interface.

Experiment data recorded by the middleware tools [Moringen et al., 2013] can also
serve as a basis for analysis of the experiment and verification or falsification of the
initial hypothesis, motivating refinement, changing or even replacing of the initial
motion primitive hypothesis and its respective models, as indicated in Fig. 9.1.
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9.2. Discussion

This chapter showed the intended model-driven engineering process targeted to model-
ing of motion primitive architecture hypotheses based on the proposed domain-specific
languages and toolchain.

Similar to state of the art model-driven engineering approaches in robotics, dis-
cussed at the beginning of this chapter, the workflow starts with modeling of the
platform independent model (PIM), followed by annotation of the platform specific
model (PSM) aspects to target the experiment to a certain robot platform. Both steps
are independent and can be performed by different roles, i.e. the functional modeling
by the motion primitive expert, annotation of non-functional aspects and targeting to
a platform by a system integrator and or robotics expert. Other than proposed by
MDA, the introduced workflow does not involve explicit modeling of a computation
independent model (CIM).

However, the workflow addresses several of the functional and non-functional re-
quirements introduced in Section 4.2. It primarily eases expressing of domain problems
and solutions for domain experts (NFR5) by allowing specification of motion primi-
tive architectures on higher level of abstraction, independent of in a particular target
technology or platform (NFR6). This is important so that formulation of motion
primitive architectures can survive platform changes, which occur on a regular basis
in robotics research, and be reusable across platforms [Dalgarno and Fowler, 2008],
which is an explicit non-functional requirement for the proposed approach (NFRT).
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Evaluation and Application

This chapter demonstrates the practical use of the proposed domain-specific languages
(DSLs) and the proposed model-driven engineering (MDE) process for modeling and
execution of complex motion primitive architectures.

Evaluation of MDE and DSL based approaches such as the one proposed in this
thesis is a complex task, as they tend to show their full potential in complex sys-
tems and especially in evolution and maintenance of complex systems [Mernik et al.,
2005, France and Rumpe, 2007]. Thorough quantitative evaluation of this aspect,
however, requires long-term evolution of a complex system with classical development
approaches to generate ground truth for comparison with a DSL based approach. This
is not feasible for this work. Instead, three, mainly qualitative, evaluation steps are
conducted by means of two case studies, which is a suitable research methodology in
software engineering [Runeson and Host, 2009).

One can roughly differentiate two different kinds of evaluation approaches: qual-
itative and quantitative evaluation. Several MDE approaches in robotics conduct
qualitatively evaluation by means of conceptual discussions based on examples, e.g.,
discussing portability of the semantics to different platforms as done for example by
Trojanek [2011], Reckhaus et al. [2010], Klotzbiicher et al. [2011]. Laet et al. [2012c]
model several typical use cases and show how common errors can be avoided by using
its proposed semantics.

Ozgiir [2007] discusses four different quantitative benefits and corresponding metrics
that can be used to evaluate a model-based approach and can serve as a best prac-
tice. Efficiency for example can be evaluated in terms of performance and memory
utilization. Frigerio et al. [2012b] benchmark the generated C++ controller code in its
intended use case on platforms with different numbers of degrees of freedom (DoF).
Efficiency in this sense was not focus of this work, though. Another measure is scal-
ability in terms of compilation time and system size. Productivity can be measured
in terms of size, effort, or number of change requests. This is for example evaluated
by Ringert et al. [2013] and Romero-Garcés et al. [2013]. Both evaluate the usage
of a DSL from the developer’s perspective against classical approaches by means of
empirical software engineering. Non-functional aspects they covered comprise time
spent for learning of the technologies, effort for fixing bugs, component reuse, and
complexity of understanding reused software artifacts. Klotzbiicher et al. [2011] con-
ducted hardware experiments on a PR2 and a KUKA Lightweight Robot IV (KUKA
LBR IV) and analyzed the necessary number of lines of code for platform-independent
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and robot/framework-specific code. A quantitative aspect that is often a main con-
cern of DSLs is their increased Fzpressiveness (sometimes also “expressivity”) over
general-purpose languages (GPLs). This typically means that programs are shorter
and their semantics are easier to access by processing tools. Programs expressed using
a DSL can and should be significantly more concise than expressed in GPLs. This
quantitative aspect is evaluated in this work based on a complex real-world example.

This chapter discusses two complex use cases realized with the proposed languages
and workflow. Section 10.1 discusses expressiveness and completeness of the languages
in two use cases, Section 10.2 conducts a quantitative evaluation of the expressiveness
in terms of source lines of code (SLOC) in the second use case.

10.1. Qualitative Evaluation

A qualitative evaluation of the proposed approach is done in two complex industrial
use cases concerning two different qualitative aspects. The first use case discussed
in Section 10.1.1 is from the Shop Floor Logistics and Manipulation task of the Eu-
ropean Robotics Challenges (EuRoC)! focusing on mobile manipulation in uncertain
environments and requires adaptive motion generation capabilities. The second use
case discussed in Section 10.1.2 is a complex, real-world industrial application in-
cluding motion generation integrated with external perception, physical human-robot
interaction (pHRI) and machine learning.

10.1.1. Case Study: Shop Floor Logistics and Manipulation

This section discusses Task 4 of the Shop Floor Logistics and Manipulation task of the
European Robotics Challenges (EuRoC). The EuRoC Challenge 2 is largely a challenge
of integration and coordination of different functionalities such as perception, object
detection, motion planning, etc.

The task of the EuRoC Challenge 2 is to control a simulated KUKA LBR 1V in-
dustrial robot arm mounted on an omni-directional mobile platform to grasp objects
and place them in defined target areas. The main objective of the challenge is to
assess the robot’s ability to grasp and place objects in an unstructured and uncertain
environment. Position of the objects is a priori unknown, shape, color, size, and mass
of the object is known with some uncertainties. Obstacles unknown in position, shape,
size, and color may obstruct the robot’s path to the objects and their respective tar-
get areas [European Robotics Challenges, 2014]. The KUKA LBR IV robot is placed
between the objects and target areas, potentially out of reach. Once all objects are
picked up and placed or the time is over the task ends. Fig. 10.1 shows a screenshot
from the simulated environment with the KUKA LBR IV, obstacles, the manipulation
objects, and their respective target areas. The EuRoC consortium provides a simula-
tion environment that “encapsulates all low-level control and reflex planning loops of
the KUKA LBR IV” [European Robotics Challenges, 2014].

!Cf. EuRoC project: http://www.euroc-project.eu/
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Figure 10.1.: Task 4 of the Shop Floor Logistics and Manipulation task of the European
Robotics Challenges. The screenshot shows the simulated environment
with the obstacles (large blue and red boxes), the manipulation objects
(small red, blue, and green objects), and their respective target areas
(small red, blue, and green discs on the table).

The base of the robot arm is freely movable in 2D on the table; the robot itself is a
redundant manipulator with 7 DoF. The end-effector of the robot is quipped with a 3D
time of flight (ToF) camera and a gripper. Small objects (red cube, green cylinder, and
blue composite object), their target areas (small colored discs on the table), and larger
objects are placed on a table together with the obstacles, as shown in an exemplary
screenshot of the simulation environment in Fig. 10.1. The pole in the closest corner
of the table in Fig. 10.1 holds an additional ToF camera.

During participation in the European Robotics Challenges challenge, the coordi-
nation aspect of the application and its architecture was completely modeled in the
Middleware Coordination DSL and successfully employed?. This was done based on
the rather generic Coordination DSL with the middleware extensions from the Mid-
dleware Coordination DSL introduced in Chapter 6, yet without the motion primitive
extensions from the Primitive Coordination DSL. The software components of the
system were developed in Compliant Component Architecture (CCA) and Robotics
Service Bus (RSB) and therefore compatible on a technical level. At this time of
the challenge, neither the Middleware DSL for structural description of the RSB sys-
tem, nor the Component Coordination DSL extensions were available. This is briefly
explained in Section 10.1.1.1.

To evaluate the ability to make formulation of motion primitive architectures easier

2The system successfully succeeded in the qualification stage, “Stage I QUALIFYING: Simulation
Contest”.
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and more concise (NFR5), modeling of the motion control part of this application
and its coordination is redone by also using the motion primitive (MP) DSLs, i.e.
modeling the structural part with the Motion Primitive DSL and expressing the ac-
cording coordination aspects with the Primitive Coordination DSL. Since the DSLs
proposed in this work are targeted to motion primitive architectures, only the system
parts responsible for motion control are modeled with the motion primitive specific
DSLs and compared with the original modeling. The perception and planning compo-
nents are considered as external components in accordance with Section 3.3. This is
explained and compared in Section 10.1.1.2 and discussed in terms of expressiveness
and robustness. Instead of presenting both (the generic and domain-specific) models
in detail, major differences between the two approaches are highlighted and discussed
on a qualitative level.

10.1.1.1. Modeling with Middleware Coordination DSL

Three RSB processes were implemented for the vision sub-system, the motion control
subsystem consists of three controllers and two command filters for the robot arm (all
CCA), and additional two controllers for the gripper (position and force controlled,
also CCA).

The State Machine consists of 4 Composite States and 28 States, of which 1 Com-
posite State and 8 States are dedicated to motion control. Several of these States
consist of sending a goal to the controllers and waiting for them to finish the motion
to follow a Transition to the next States, which therefore serves as an example in this
section.

Fig. 10.2 shows an exemplary state that incorporates two of the presented func-
tionalities. In its on entry-Action a JointAngle is published to the specific Scope the
respective controller listens to for commands. The Transition listens for an RSB event
on a specific Scope to evaluate whether the robot reached the goal or not. To evaluate
this, the payload of the RSB event, the current JointAngle configuration of the robot,
is accessed and inspected. A Java Expression Language (JEXL) expression compares
the values of the JointAngles with the goal based on a threshold. The outcome of
the expression renders the transition either false or true, the latter one resulting in a
Transition to the next State.

While this model was working in the EuRoC Challenge, there are some observa-
tions regarding expressiveness and robustness. First, the Scopes in this example are
hard-coded in the behavioral model due to the absence of a structural model. If the
component implementation or configuration changes, i.e. the controllers listening to
different Scopes, the specified coordination will fail due to missing communication,
which can’t be detected at design time. A second observation is the complexity of
the Conditions in the two Transitions. The check for convergence of the motion is
split up into to checks, one checking if the robot is already at its target configuration
(this is necessary when it was already there when the command was sent), the second
one checking the convergence status sent by the robot. The JEXL expression in the
first condition is a string of > 300 characters, and therefore hard to write, hard to
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state Initialize Arm (final: false)
actions:
on entry: publish rsb event ComponentState:
state: EXECUTION
to scope: fccaxcompJJOlnt&nglesFllterystatechanqex
publish rsb event JointAngles:
angles: 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
to scope: /flexirob/lwr/cmd/all/position

on exit: publish rsb event ComponentState:
state: OFF
to scope: /cca/comp/JointAnglesFilter/statechange/

transitions: ) )
-> Initial Scene Scan on rsb event on /flexirob/lwr/status/all/position/ with RST rst.kinematics.JointAngles if
_event.data.data.getAngles(0) 1t minDeltaInit and _event.data.data.getAngles(1l) 1t minDeltaInit and _event.

-> Initial Scene Scan on rsb event on /flexirob/lwr/status/robotstate with RST rst.devices.flexirob.RobotState
if _event.data.data.hasMotion() and _event.data.data.motion.toString() eq 'CONVERGED'

Figure 10.2.: Example state of the EuRoC coordination to initialize the robotic arm.
The conditions are shortened for the sake of visualization, indicated with
an ellipsis (“...”).

understand, and hard to debug?®.

10.1.1.2. Modeling with Motion Primitive DSL and Primitive Coordination DSL

For a qualitative comparison with the original modeling, the structural aspects of the
system are modeled with the Motion Primitive DSL and the behavioral aspects are
modeled with the Primitive Coordination DSL. Yet, the structural model only modeled
the motion control part of the system, since the Motion Primitive DSL was not able
to express the perception and planning parts properly. It is modeled with five Reach-
ing Controllers, one Tracking Controller, each with a Criterion, as well as twelve
Spaces.4

Through modeling, not only the behavioral aspects the EuRoC system as done in
Section 10.1.1.1, but also its structural aspects, stringification® of, e.g., Scopes and
conditions are completely avoided. Fig. 10.3 shows how this makes description of
the State significantly more concise and readable. The Joint Angles are sent to a
Space that is connected to an Adaptive Module in the structural model. The same
applies to the changing states of when it comes to change the state of a Component.
While in Fig. 10.2 the targeted Component is implicit in the Scope, in this model the
targeted Adaptive Module is explicitly referenced. When configuration of the Adap-
tive Module changes, the reference stays valid and mis-configurations are detected by
the validation rules of the DSLs at design time. Additionally, the two Conditions in
the Transitions shown in Fig. 10.2 are reduced to one Transition with a far simpler
Condition referencing the Criterion of the respective Reaching Controller.

3The JEXL expression is shortened in Fig. 10.2 for the sake of visualization.

4The modeling discussed in Section 10.1.1.2 based on the Motion Primitive DSL and Primitive Co-
ordination DSL could unfortunately not be executed and tested in the EuRoC environment due
to timing constraints.

5 «Stringification” here refers to referencing system parts just by their names stored in a string. This
is considered bad practice, as it is not very robust against errors and changes in the code, i.e. errors
can’t be detected at design time, e.g., by the compiler, but will usually lead to runtime errors.
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state Initialize Arm (final: false)
actions:
on entry: publish JointAngles:
angles: 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
to space Joint Commands
change state of JointSpaceController to Execution

on exit: change state of JointSpaceController to Off/Stop/Stopped
transitions:
-> Initial Scene Scan on JointSpaceControl.JointAnglesCriterion converged if <no jexlCondition:

Figure 10.3.: Example state of the EuRoC coordination to initialize the robotic arm,
using Primitive Coordination DSL extensions.

While the comparison between Fig. 10.2 and Fig. 10.3 shows that specification of the
system coordination gets much more explicit and the length of the State is significantly
reduced in the second case, this comes at the cost of an additional structural model.
In the same sense, while the Condition is significantly shorter and more concise in
the second case, it comes at the price of modeling an Adaptive Component with a
Criterion in the structural model.

However, even then, the more explicit model makes the problem easier to express,
easier to understand and accessible for more validation and development support.
Errors can be warned about during design time, avoiding errors at runtime that might
be costly in experimentation and hard to debug, as discussed in Chapter 6, Chapter 8,
and Chapter 9.

Another observation of the use case is that the language modularization, extension,
and composition (LMEC) approach and its integration with the toolchain as discussed
in Chapter 8 works. The same toolchain and DSLs work for modeling coordination
of generic RSB based systems by using only the middleware-specific subset of the
proposed DSLsS, as well as for motion-specific systems using the full set of the proposed
DSLs. A second observation is that specification of the system becomes more concise
and readable, exemplified with a small example, and — even more important — more
explicit and robust. Comparing the more generic modeling based on the Middleware
Coordination DSL with the motion-specific modeling based on Motion Primitive DSL
highlights some major differences. Note that the comparison is done only on the
motion-specific part.

10.1.2. Case Study: Automated Gripping of Laundry with the KUKA
Lightweight Robot IV

The second use case comprises a complex robotics setup combining the redundant and
compliant KUKA LBR IV, 3D perception and a number of calibration, human-robot
interaction, vision, and learning components [Nordmann et al., 2015]. It is used in
a real world application arising in the context of an innovation project within the
German national leading edge cluster German national leading edge cluster “Intelli-

5The Middleware DSL, the Coordination DSL, the Middleware Coordination DSL, and the Graph
DSL.
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Figure 10.4.: Automated gripping of laundry with the KUKA Lightweight Robot IV.

gent Technical Systems OstWestfalenLippe” (it’s OWL), where the goal is to reduce
time and costs for large automatic laundry washing facilities. The application requires
calibrating, interacting, learning kinematics, identifying a pleat in the laundry to au-
tomatically grip it, and safely moving the robot into a grasping position to feed the
laundry into a further automation process. Although quite typical for robotics ap-
plication domains, systems of this complexity are not seen often in practice because
manual programming and integration of such system would already be very challeng-
ing for handcrafted development. It rather calls for systematic design methods as the
one proposed in this work.

10.1.2.1. Task and Setup

The main objective of this project is automatic handling of laundry, which requires
perception of the laundry, detection of a pleat, and control of the robot to feed the
laundry into further processing. A further goal of the project is to organize everything
in a flexible manner that allows adaption of the system to new environments, which
motivates support by the method proposed in this thesis to create a motion primitive
architecture that complies with the given objective of the project. The setup for this
project comprises the 7 DoF industrial robot arm KUKA LBR IV with a SCHUNK
PG70 gripper, as well as a 3D ToF camera for 3D perception, shown in Fig. 10.4. The
challenges in designing and developing a complex system of this kind are [Nordmann
et al., 2015]:

Control: Gripping of a laundry pleat requires the gripper of the robot to be con-
trolled in all six task dimensions (translatory and rotatory) to reach the pleat and to
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be aligned to grip it. Position and orientation of the pleat is previously unknown and
requires flexible control of the robot in its task space.

Adaptability: The system is supposed to be deployable in varying environments
and near to the machines that are to be fed with laundry for further processing.
Restrictions of the robots movement as well as positioning of the 3D ToF sensor are
not necessarily a priori known. This calls for flexible calibration and adaption of the
System.

This project serves as a case study to evaluate combination of motion primitive
(FR3) in a complex system and the adaption through machine learning (FR2), in-
tegration of the motion primitive architecture with external perception (FR5), for-
mulation of the architecture in a technology-independent and platform-neutral way
(NFR6) and execution on a real robot platform (NFRT).

10.1.2.2. Modeling

The motion and manipulation capabilities required for this project are realized with
the DSLs and the toolchain proposed in this work. The system is integrated with an
external 3D perception stack for pleat detection that was developed in the German
national leading edge cluster it’s OWL.

In a first system state, an Adaptive Module CalibrationLearner is set into its
learning state and learns the 6D transformation between a 3D camera and the KUKA
LBR IV IV during a kinesthetic teaching phase, where a human samples the workspace
in physical human-robot interaction with the end-effector; cf. Fig. 10.5. In a second
system state, the Adaptive Component RedundancyLearner containing an Extreme
Learning Machine (ELM) [Huang et al., 2006] is configured to learn the desired redun-
dancy resolution in different parts of the workspace. Coordination of the sub-states
is done based on interaction forces of the robot and based on the learning states of
the ELM Adaptive Module. The sub-states manage the component states of the
RedundancyLearner in the different learning and interaction states.

The third system state is the actual execution where mainly the Adaptive Compo-
nent named HybridController is active, moving the gripper to the grip poses given by
the external 3D perception component while complying to the redundancy resolution
learned previously by the RedundancyLearner. Substates like approaching, gripping,
and opening the gripper are coordinated by using convergence of movements as a
criterion, which is part of the Primitive Coordination DSL.

The complete system involves physical human-robot interaction for calibration and
training, 3D perception, and compliant robot control in our framework. Fig. 10.5
shows the auto-generated structural and behavioral system views in Fig. 10.5b. The
automatic rendering of structural aspects into the behavioral models allows visualiza-
tion of both aspects and their dependencies in Fig. 10.5b.

132



Endeffector Status Pose /

10.1. Qualitative Evaluation

RSB Process
‘Pleat Detection’
<<unmanaged>>

Calibratiol
<Pose> (6-dim.)

Cam Nearest Point
<Translation> (3-dim.)

'Calibration Learner'
<InputTriggered>

Adaptive Mapping
'Coordinate Transformation*

<Pose> (6-dim.) 2

‘Redundancy Learner'

Redundang¢y Learning

Y

Y

Controller Goals
<Pose> (6-dim.)

Adaptive Module

- Nullspace Task
”] <JointAngles> (7-dim.)

Joint Status /
<JointAngles> (7-dim.)

Gravity Compensation Hybrid Controller
Y

Adaptive Module

‘LWRCBFController'

Adaptive Module
'Joint GravComp'

I Hybrid Controller.PoseConverged I

Y Y Y

Joint Command Controller Status
<ACStatus> (1-dim.),

<JointAngles> (7-dim.)

(a) Structural system view with the Adaptive Components as white bozes, Adaptive Modules
in dark-red, Criterion as grey box and Spaces are shown as parallelograms. The green box
on top shows the 3D perception.

Calibration|

Redundancy Learning

Recording Training Data

Teaching

Teaching Position Reached
O<—| Home posture |<—|

Learning

Y_Y Y Y

LWRCBFController

Joint GravComp

i i
| Redundancy Learner 1
i i
i H

AA A

Lift Laundry
Approach laundry basket
Drop laundry

Laundry Dropping

Laundry Gripping|

Grip pleat
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Figure 10.5.: Auto-generated system visualization of the industrial use case, manually
layouted and reduced for the sake of clarity [Nordmann et al., 2015].
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10.2. Quantitative Evaluation

The qualitative evaluation section exemplifies the Hypothesis Test Cycle proposed in
this thesis in two complex examples and thereby provides a qualitative evaluation
of how well the proposed MDE process, DSLs and toolchain are suited to express
and develop complex examples of the domain. This section now adds a quantitative
evaluation of the presented approach in the automatic laundry-handling case study.
Evaluation in terms of use cases is a suitable empirical research methodology in soft-
ware engineering research [Runeson and Host, 2009].

The quantitative evaluation compares the lines of DSL code necessary to specify the
automatic laundry handling system with the number of generated lines required to
visualize and execute the system according to the chosen technology mapping. This
provides an estimation for the level of expressiveness of the chosen models and DSLs
(NFR5).

The model-to-model transformation (M2M) introduced in Section 6.4 and model-
to-text transformation (M2T) introduced in Section 8.4, transform DSL models into
GPL code for system visualization and execution.

For visualization of the architecture of the system, the Motion Primitive DSL and
Coordination DSL models are transformed into graph representations, i.e. the rendered
graphs shown in Fig. 10.5a and Fig. 10.5b.

For execution, Motion Primitive DSL and Coordination DSL are transformed into
C++ code for the CCA components and Dynamical System classes, the C++ main
file with the component configuration, the glue code for additional C++ components
loaded from a software repository based on their deployment descriptors, and three
CMake configuration files for software dependency handling and makefile generation.
The behavioral aspects are transformed into an additional graph representation and
State Chart XML (SCXML) [Barnett et al., 2013] code that represents the specified
state machine logic. Furthermore, several C++- files are generated for the connection
between the State Machine and the structural Components of the system.” Note, how
the cumbersome task of coordinating Components state changes and State Machine
Transitions can be taken care of by the generation tool chain.

Code generation of this case study generated 1 SCXML file, 4 GraphML files,
12 C++ files with 1,248 SLOC, and 3 CMake files from the system specification done
in 137 lines of Motion Primitive DSL specifying the structural part and 112 lines of
Coordination DSL for coordination, a more compact and explicit specification of the
system. See Table 10.1 for all numbers. The auto-generated (and manually adjusted)
graph representation of the system, including its structural and behavioral aspects as
well as their dependencies, rendered from the generated GraphML files is shown in
Fig. 10.5.

The entire system was designed in a language workbench as detailed in Section 8.1.
Code generation generated GPL code for execution on the KUKA LBR IV and suc-

"This case study was conducted with the first iteration of the technology mapping, i.e. the QT library
sce, an SCXML compiler, and therefore required generation of C++ files to mediate between the
QT state machine and the RSB based system.
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language number of files | SLOC
Domain-Specific Language | Motion Primitive DSL 1 137
Coordination DSL 1 112
Technology Mapping SCXML 1 360
GraphML 4 4,455
CMake 4 260
C++ 12 1,248

Table 10.1.: Total source lines of code of the system specification in the proposed DSLs
and with the targeted technology mapping.

cessfully executed automated handling of laundry based on the external 3D pleat
detection. The generated C+-+ source code is compiled into two executables, the com-
ponent circuit and the state machine, and was successfully executed and tested on the
KUKA LBR 1V in simulation and on the real robot. This was showcased numerous
times for project reviews and external guests.

10.3. Discussion

The introduced case studies provide evaluation on the qualitative level, showing the
usability of the proposed DSLs and toolchain for specification of complex systems of
the targeted domain, and a quantitative evaluation showing the gained expressiveness
in the second case study.

Section 10.1.1 evaluates the expressiveness of the models and DSLs by comparing
modeling of a complex motion primitive architecture with the more generic Middle-
ware Coordination DSL modeling environment as it was successfully employed in the
EuRoC challenge with the more domain-specific modeling of the motion control part
of the system with the Motion Primitive DSL and Primitive Coordination DSL. The
case study exemplifies how the more domain-specific model leads to a more expressive
(NFRS5), more concise domain model, which helps avoiding common sources of errors,
enables additional model checking, and makes it better readable. Section 10.1.2 evalu-
ates the completeness of the approach (NFR8) and that the models, DSLs, toolchain
and development process are able to express and execute a complex motion primi-
tive architecture. The case study shows the combination of motion primitive (FR3)
in a complex system and the adaption through machine learning (FR2), integration
of the motion primitive architecture with external perception (FR5), formulation of
the architecture in a technology-independent and platform-neutral way (NFR6) and
execution in simulation ((NFR9)) and on a real robot platform (NFRT).

Section 10.2 does a quantitative evaluation to further investigate on the expressive-
ness of the DSLs by comparing the source lines of code of the DSLs code necessary
to model the second case study with the source lines of code of the generated code of
the targeted technology mapping to visualize the motion primitive archietcture and
execute it on a real robot.
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Conclusion

11.1. Summary

Starting point for this work is the observation that a vast amount of robotics research is
still done in isolated islands of functionality, experimenting with single aspects rather
then fully integrated systems. The targeted domain of motion primitive architectures,
however, calls for this integration, since a main — biologically inspired — hypothesis of
the domain is that its full potential comes from the combination of the large body of
work that has been done on motion primitives.

While biological research supports this hypothesis, its verification in robotics is still
hindered by the wide gap between “white board lines and boxes”, i.e. the abstract
motion primitive on paper and its actual general-purpose language code. The mo-
tion primitive is often no longer explicitly visible, but hidden in the source code and
interwoven with platform-specific code for perception, planning, etc. The target of
this work is to close this gap between concepts and code by providing a conceptual
framework that allows description of motion primitive architectures on a higher level
of abstraction, while at the same time making them executable by means of model-
driven engineering. Hence, a first contribution of this work is a systematic design
process to provide a model-driven engineering process and environment for motion
primitive architectures, proposed in Chapter 4. The process starts with a domain
analysis, introduced in Chapter 3 that leads to the functional and non-functional
requirements of this approach.

Chapter 5 to Chapter 7 detail how, based on this approach and the findings of the
domain analysis, a metamodel, domain-specific languages (DSLs), and accordingly a
programming model are developed to cover the domain. To accommodate for the di-
versity of the domain, it is separated into a set of concern-specific DSLs following the
language modularization, extension, and composition (LMEC) approach proposed by
Vélter et al. [2013]. The specific language modularization, extension, and composition
of this work targeted to the motion primitive architecture domain, detailed in Chap-
ter 6 is a second contribution of this work. Using the proposed models and DSLs eases
expression of motion primitive architectures (FR1, FR2, and NFR5) while at the
same time restricting its user to the agreed-upon concepts. While this restricts the
developer in its freedom of implementation, it ensures compatibility of motion primi-
tives and motion primitive architectures using the proposed approach (FR3), which
is necessary to investigate the main hypothesis of the domain. At the same time,
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the introduced deployment descriptors provide the means for integration of existing
legacy work (NFR3) as well as prototyping and research of parts that are not yet
stabilized in the domain concepts and languages, yet subscribe to the basic concepts
and interfaces (NFR1).

A third contribution of this work is to make the conceptual framework available
for the motion primitive experts to support them in specifying a motion primitive
architecture hypothesis and verify it on a robot platform. To achieve this, the pro-
posed languages are available in a DSL integrated development environment (IDE)
that provides editing support such as code completion, context help, model checking,
and code generation. It thereby forms a convenient environment for the development
process detailed in Chapter 9 to formulate motion primitive architectures in platform-
independent models (NFRG6), bind them to a specific robot platform (NFRT), and
generate the entire code to execute them on of the targeted robot platforms (NFRS).
While a running example serves as a concrete illustration, Chapter 10 shows the fea-
tures of the proposed approach, concepts, and toolchain in more complex examples.

Several related model-driven engineering approaches for robotics rose over the last
years. The DSL approaches, however, naturally target single domain-specific concerns
as discussed by Nordmann et al. [2014], and are often not integrated to a degree
that allows generation of complete (in terms of Completeness) executable systems.
Related approaches that do integrate several DSLs were not found targeting the motion
primitive architecture domain. While this work proposed and advertises composition
of DSLs and reuse of existing approaches (NFR1), it does itself not directly reuse
existing DSLs. The problem is that reuse of DSLs is often hindered by technical issues
such as technical incompatibilities and incompatibilities on a meta-metamodel level,
missing or insufficient documentation, as shown by Nordmann et al. [2014]. This work,
however, reuses approaches on a model level, e.g., the Coordination DSL reusing the
widely used State Chart model and State Chart XML (SCXML) standard.

Evaluation has shown that the proposed approach and toolchain do work for rather
complex robotics systems, exemplified in Chapter 10 and thereby provide a positive
answer to the research questions RQ1 — RQ3 introduced in Chapter 1. Regarding
research question RQ4, its introduction into the robotics research context is more
ambivalent. A model-driven toolchain such as the one proposed in this work provides
a degree of tool lock-in that deters some developers from adopting. Yet, involving
developers is often still necessary and important in a research context, especially in
the beginning when the DSLs and toolchain are not mature enough. The iterative
approach and technical features such as the deployment descriptors, however, helped
integrating with legacy work to ease the adoption and thereby proved useful to provide
runnable systems, such as the ones discussed in Chapter 10, as it is expected from a
research project.
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11.2. Outlook

Naturally, the most interesting experiment done with the proposed approach to this
point was also the last one and time ran out when things were getting exciting. This
outlook shall point to some aspects of particular potential and questions that need
further investigation.

Employing LMEC approach in the motion primitive architecture domain worked,
as discussed in Chapter 6, Chapter 8, and exemplified in Chapter 10. The introduced
approach is therefore proposed for use in other multi-disciplinary domains as well,
requiring a dedicated domain analysis and following the steps proposed in Chapter 4
and detailed by this work. While this is only possible in the first place due to the
LMEC features of modern language workbenches such as Jetbrains Meta-Programming
System (MPS), languages developed with these language workbenches are currently
still locked in their particular environment due to meta-metamodel incompatibilities.
The ultimate target that the LMEC is pointing to, is however to provide a library
of models and languages, such as the ones discussed in Section 3.3, and combine
them to more powerful modeling environments. Further development on language
workbenches, however, will increase the necessary tool support to get closer to this
goal.

Currently, a means to do this in approaches such as the one proposed in this work,
is to provide additional transformations to model interchange formats, such as XML
Metadata Interchange (XMI), or to other formats such as Unified Modeling Language
(UML), Systems Modeling Language (SysML), or Modeling and Analysis of Real Time
and Embedded systems (MARTE). This is possible with parallel generators as exempli-
fied in Chapter 6, potentially opening up to a vast amount of additional tool support.

The models and languages developed in this thesis currently mainly target the capa-
bility building and system deployment phases of a model-driven development process
as proposed by Kraetzschmar et al. [2010]. Extending the models, languages, and
toolchain to further development phases is a promising future work. Providing models
for run time, for example by modeling the solution space [Ramaswamy et al., 2014c],
could enable online selection and combination of motion primitive, which can help
exploiting them even further in open-ended scenarios and unstructured environments.
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Appendix A.

Related References by the Author

Nordmann et al. [2012a] present an early iteration of the KUKA Lightweight Robot
IV (KUKA LBR 1IV) based vertical prototype introduced in Section 7.3 and
one of the domain examples discussed in Section 3.3 for learning of redundancy
resolution in kinesthetic teaching.

Nordmann et al. [2012b] introduce parts of the programming model and technology
mapping discussed in Chapter 7 based on the Bionic Handling Assistant, a soft
continuum kinematics robot. Short excerpts of this work are included in Chap-
ter 7.

Nordmann and Wrede [2012] present an early version of the proposed model-driven
engineering (MDE) approach and domain-specific languages (DSLs) and discuss
them on a conceptual level based on the domain examples introduced in Sec-
tion 3.3.

Nordmann et al. [2013a] presents an early version of the proposed Hypothesis Test
Cycle and exemplifies its usage together with a quadruped robot simulation envi-
ronment. It shows an early iteration of the proposed design process, and details
the Oncilla quadruped robot (Oncilla) mock platform introduced in Section 7.3.

Nordmann et al. [2013b] present the Oncilla mock platform and the accompanying
software interfaces and architecture. Excerpts of this work are included in Sec-
tion 7.3.

Wrede et al. [2013] discuss a user study with 49 industrial workers at a medium-sized
manufacturing company, teaching the KUKA LBR IV based vertical prototype
introduced in Section 7.3. It thereby shows a further iteration step of the intro-
duced programming model and technology mapping.

Nordmann et al. [2014] survey the available literature on DSLs in robotics and dis-
cuss them from the perspective of users and developers of model-based ap-
proaches in robotics along a set of quantitative and qualitative research ques-
tions. Excerpts of this survey are used for the discussion of related approaches
in Chapter 2 and the domain analysis in Chapter 3.
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Nordmann et al. [2015] present the approach proposed in this thesis and evaluate it
in a complex case study for automatic laundry handling with the KUKA LBR IV.
Section 10.1.2 is based on the results and discussion of this work.
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Appendix B.
Domain Analysis

Following Kang et al. [1990], the domain analysis consisted of a survey conducted
with domain experts, namely the project partners of the European AMARSI project,
as well as analysis of existing software and systems. Section B.1 shows two feature
models resulting from the analysis of existing compliant robot control software and
motion primitive based systems. Section B.2 shows an exemplary completion of the
survey for one of the surveyed motion primitive approaches, the Dynamical Movement
Primitive (DMP).

B.1. Feature Models

Feature models are representations of a group of systems in terms of their features
[Kang et al., 1990], usually represented by means of feature diagrams. A feature in
this context is defined as a “prominent or distinctive user-visible aspect, quality, or
characteristic of a software system or system” [Kang et al., 1990]. Section B.1.1 and
Section B.1.2 show two of the feature models resulting from the domain analysis,
describing aspects of compliant robot control and motion primitive based systems
respectively in terms of their mandatory, optional, and alternative features.

B.1.1. Actuation and Controller Boards

Fig. B.1 shows feature models of actuators and controller boards, primarily based on
the analysis of control libraries and interfaces of compliant robots, e.g., of the iCub
humanoid robot (iCub), of the Oncilla discussed in Section 7.3.1, and of the KUKA
LBR IV discussed in Section 7.3.2.

Primary feature of actuators and controller boards respectively the software li-
braries, firmware, and frameworks to control them, is to allow control of the respective
actuator. Active compliant robots, such as a compliant version of the iCub and the
KUKA LBR 1V, provide a set of control features ranging from position to force con-
trol. The different control modes, if available, allow control of the respective feature,
and often additionally allow sensing of the respective feature, e.g., through encoders in
case of joint position control. Several of the surveyed libraries and boards additionally
provide calibration routines, usually for system initialization. Controller boards and
controller libraries often additionally allow configuration, e.g., of the controller gains
or technical aspects like communication settings and communication rates.
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B.1.2. Motion Primitives

Fig. B.2 shows features of motion primitives as found in the domain analysis (cf. Sec-
tion 3.3) and examined with the survey (cf. Section B.2).

A mandatory feature of a motion primitive is the contained Dynamical System,
which can be an ordinary differential equation (ODE) or a complex Dynamical Sys-
tem such as an artificial neural network (ANN). As an optional feature, motion primi-
tives with adaption capabilities comprise additional machine learning mechanisms that
adapt the Dynamical System, e.g., adapting the weights of the ANN.

The surveyed motion primitives provide a range of dedicated inputs and outputs,
e.g., to receive the goal of the motion, feedback from the robot, to send controller
output, or report on their motion status, cf. Section B.2. The control output of the
motion primitive is mandatory, as this creates the actual motion. The motion can
often be externally configured, e.g., in terms of the speed or shape of the motion.

Timing of the surveyed motion primitive, i.e. how often they calculate a new motion
setpoint, is either based on a fixed clock signal, based on the timing of incoming inputs,
or based on a combination of these.
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B.2. Adaptive Module Survey

The Adaptive Module survey comprised meta information (rows 1 — 2 in Table B.1),
functional properties (rows 3 — 17), and non-functional properties (rows 18 — 23). The
survey was completed for twelve different Adaptive Module approaches by partners
of the European AMARSI project. Table B.1 shows an exemplary completion of the
Adaptive Modules survey for DMPs, cf. Ijspeert et al. [2013].

l Name

|

Dynamical Movement Primitive ‘

Group / Author

EPFL - BIOROB

Paper(s) / Reference(s)

[Ijspeert et al., 2013]

Dynamics Non-linear convergent

Nonlinearity Parametrized additive nonlinearity

Representation Trajectory (position and/or velocity and/or acceleration)

Attractor Point attractor or limit cycle attractor (world / joint coordinate)

Coupling One system per DoF, coupled by the canonical system. If there
are multiple canonical systems, canonical systems are phase-
synchronized.

Generalization Change point attractor

Movement generation

Transient to attractor

Learning algorithm

LWPR; mixture of local functions

Supervised / unsupervised

Supervised; reinforcement learning

Sensory feedback integration

Yes; affecting phase and amplitude

Number of state variables 4

Online vs. offline Online or offline
Robustness to perturbations | Yes

Adaptation to perturbations | On-the-fly
Local vs. Global Stability Global

Representation and Interface

Input: current position/velocity/acceleration, (internally: current
states, 2-3 values), Output: first derivative of states including the
current value in trajectory space (pos/vel/acc). Trajectories are
modeled as linear combination of phase-driven basis functions.

Timing

The phase variable of the canonical system works as the internal
clock for coordination. As the computations are light, small At
values can be considered.

Robustness and Reliability

Anytime guarantee, satisfies reasonable real-time constraints, more
basis functions to model more curvatures, and less ones to have a
smoother output (when having lots of noise).

Dependencies

Usually depends on proprioception, but can also work open-
loop, when controller (position or velocity or acceleration) is good
enough.

Runtime / States

Offline Learning, online Learning, evaluation, recognition (with
the help of an external tool). Learning is one-shot or online, and
execution is simple and lightweight.

Software Availability

MATLAB or C

Table B.1.: Exemplary completion of the Adaptive Modules survey for the Dynamical
Movement Primitive.
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Glossary

AMARSi

Large scale European integration project in the Seventh Framework Programme,

see: https://www.amarsi-project.eu/.

it's OWL

German national leading edge cluster “Intelligent Technical Systems OstWest-

falenLippe”.

5Cs

Communication, Computation, Configuration, Coordination, and Composition.

AADL

Architecture Analysis and Design Language.

ADL

architecture description language.

ADSL
architecture DSL.

ANN

artificial neural network.

API

application-programming interface.

AST

abstract syntax tree.

BCM
BRICS Component Model.

CBSE

component-based software engineering.
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CCA

Compliant Component Architecture.

Central Pattern Generator

Neural networks (biological or artificial) capable of producing rhythmic patterns.

Cl

continuous integration.

CiM

computation independent model.

CMake

A cross-platform free and open-source software for managing the build process
of software.

Computation Independent Model

A computation-independent model is the business or domain model and uses the
vocabulary that is familiar to the domain experts. It presents exactly what the
system is expected to do, but hides all information technology-related specifica-
tions to remain independent of the implementation..

CPC

Component-Port-Connector.

CPG

central pattern generator.

dataflow

A dataflow network is a network of concurrently executing processes that com-
municate by sending data over so-called channels..

DMP

Dynamical Movement Primitive.

DoF

degrees of freedom.

Domain-Specific Language

A programming language or executable specification language that offers, through
appropriate notations and abstractions, expressive power focused on, and usu-
ally restricted to, a particular problem domain, as opposed to General-Purpose
Languages..
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DSL

domain-specific language.

DSML

domain-specific modeling language.

Eclipse Modeling Framework

An Eclipse-based modeling framework and code generation facility for building
tools and other applications based on a structured data model.

Eclipse Modeling Project

Open-source project focusing model-based development technologies within the
Eclipse framework, providing a set of modeling frameworks, tools, and imple-
mentations..

Ecore

The core (meta-)metamodel of the Eclipse Modeling Framework (EMF), allowing
to express metamodels.

ELM

Extreme Learning Machine.

EMF
Eclipse Modeling Framework.

EMP
Eclipse Modeling Project.

EuRoC
European Robotics Challenges.

Feature-Oriented Domain Analysis

The feature-oriented domain analysis [Kang et al., 1990] is a formal domain
analysis method developed in 1990 that introduced features models and feature
modeling..

FIFO

first in, first out.

FODA

feature-oriented domain analysis.
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General-Purpose Language

A programming language designed to be used in a wide variety of application
domains, as apposed to Domain-Specific Languages..

GPL

general-purpose language.

GPML

general purpose modeling language.

GraphML
GraphML is an eXtensible Markup Language (XML) based file format for graphs..

iCub
iCub humanoid robot.

IDE

integrated development environment.

Integrated Development Environment

Programming environments normally consisting of a source code editor, code
completion, build automation tools, and debuggers.

iTaSC

instantaneous Task Specification using Constraints.

JEXL

Java Expression Language.

Kahn Process Network

Distributed model of computation where a group of deterministic sequential pro-
cesses are communicating through unbounded first in, first out (FIFO) channels..

KUKA LBR IV
KUKA Lightweight Robot 1V.

LMEC

language modularization, extension, and composition.

LTL

Linear Temporal Logic.
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LWPR

Locally Weighted Projection Regression.

M2M

model-to-model transformation.

M2T

model-to-text transformation.

MARTE

Modeling and Analysis of Real Time and Embedded systems.

MATLAB

MATLAB (matrix laboratory) from MathWorks is a multi-paradigm numerical
computing environment and programming language, especially for matrix ma-
nipulations, plotting of functions and data, and implementation of algorithms..

MDA
Model Driven Architecture.

MDE

model-driven engineering.
MP
motion primitive.

MPS

Jetbrains Meta-Programming System.

ODE

ordinary differential equation.

OMG
Object Management Group.

Oncilla

Oncilla quadruped robot.

oop

object-oriented programming.
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Ordinary Differential Equation

Ordinary differential equations are differential equations with only one indepen-
dent variable. ODEs that are linear differential equations have exact closed-form
solutions, which makes them attractive for robot control..

PbD

programming-by-demonstration.

pHRI

physical human-robot interaction.

PIM

platform independent model.

Platform Independent Model

A platform-independent model provides formal specifications of the structure
and function of the system that abstracts away technical details..

Platform Specific Model

A platform-specific model combines the specifications in the platform indepen-
dent model (PIM) with the details on how a system uses a particular type of
platform..

PSM

platform specific model.

QoS

quality of service.

RCI
Robot Control Interface.

rFSM

reduced finite-state machine.

ROS
Robot Operating System.

RPC

remote procedure call.

RSB

Robotics Service Bus.
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RST

Robotics System Commons.

RST
Robotics System Types.

SCXML
State Chart XML.

SLOC

source lines of code.

Synchronous Data Flow

Restriction of Kahn Process Networks, where nodes produce and consume a fixed
number of data items per firing..

SysML
Systems Modeling Language.

ToF
time of flight.

UML
Unified Modeling Language.

W3C
World Wide Web Consortium.

XMl
XML Metadata Interchange.

XML
eXtensible Markup Language.

Xtext
Eclipse EMF Xtext.

YARP
Yet Another Robot Platform.
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